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In this supplementary document, we present additional
quantitative results that could not be included in the main
paper. We show extensive qualitative results from our
method on the INDOOR-6 dataset and also include a sup-
plemental video. Finally, we discuss some failure cases.

1. Quantitative Results
In this section, we show the storage efficiency of our

method (NBE+SLD) compared to a retrieval and matching-
based method (HLoc [3]) (Section 1.1). Next, we further
compare accuracy between our method and multiple base-
lines through a recall plot that uses a range of thresholds
(Section 1.2). Finally, we report bearing errors for predicted
landmarks on INDOOR-6 and 7-SCENES [6] datasets (Sec-
tion 1.3).

1.1. Storage comparison

NBE+SLD requires constant storage. Figure 1 reports
the storage requirements for HLoc and our method for each
scene in the INDOOR-6 dataset. Our method requires 0.135
GB of storage for the SLD and NBE networks’ parameters
that are constant for all the scenes. This is significantly
smaller than HLoc that requires 1.5GB and 1.2GB on the
two larger scenes – scene1 and scene5, respectively. HLoc
stores SuperPoint [1] and SuperGlue [4] networks’ param-
eters and SuperPoint’s features and VLAD [2] image de-
scriptors for all the database images. The storage for fea-
tures grows linearly with the number of database images,
and that can dominate total storage on large scenes.

Figure 1. Storage (in GB) used by HLoc and NBE+SLD (Ours)
on INDOOR-6. Our method uses constant storage. In comparison,
HLoc requires more storage for scenes with more database images.

1.2. Recall plots on INDOOR-6 dataset

We further study the relative performance between the
proposed methods NBE+SLD (E), NBE+SLD, HLoc+SLD
versus DSAC*, HLoc, HLoc L300, HLoc L1000, HLoc 3000

by analyzing the recall of the pose estimate within x de-
grees and x centimeters where x varies from 0 to 10. To
that end, we continuously vary the recall threshold from
(0◦, 0 cm) to (10◦, 10 cm) (see Figure 2). We observe
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Figure 2. Recall plots. We show the recall of the pose estimate;
i.e., the percentage of test images with rotation and position er-
ror less than x degree and x centimeter, respectively, for DSAC*,
NBE+SLD (Ours), HLoc, and HLoc+SLD (Ours) on each scene
of our INDOOR-6 dataset.

that our method NBE+SLD with both EfficientNet-Lite0
and ResNet-18 backbones achieves consistently higher ac-
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Method INDOOR-6
scene1 scene2 scene3 scene4 scene5 scene6

mean↓ median↓ mean↓ median↓ mean↓ median↓ mean↓ median↓ mean↓ median↓ mean↓ median↓
NBE (ours) 6.12 4.20 9.17 5.60 7.96 5.17 11.07 6.38 8.96 6.23 10.02 6.46
SLD (ours) 2.91 0.28 5.43 0.30 2.72 0.21 1.35 0.29 5.23 0.29 2.44 0.22

Table 1. Landmark Bearing Estimation Error on INDOOR-6. We present the angular error (in degrees) for the predicted landmark
bearings from NBE and SLD on the test set of INDOOR-6. In both cases, we compute the ground truth bearing landmark vector using the
ground truth camera poses and the known 3D landmark positions. For SLD, we compute the error only for the detected landmarks whose
heatmap peak value is > 0.2. We observe that heatmap prediction (SLD) is always more accurate than bearing regression (NBE).

Method 7-SCENES
chess fire heads office pumpkin redkitchen stairs

mean↓ median↓ mean↓ median↓ mean↓ median↓ mean↓ median↓ mean↓ median↓ mean↓ median↓ mean↓ median↓
NBE (ours) 4.31 2.84 4.89 3.1 5.57 3.74 5.21 2.99 4.76 2.95 4.72 3.09 10.83 9.7
SLD (ours) 0.39 0.11 0.46 0.14 1.06 0.19 1.23 0.16 0.7 0.13 0.79 0.12 2.41 0.29

Table 2. Landmark Bearing Estimation Error on 7-SCENES. We present the angular error (in degrees) for the landmark predicted by
NBE and SLD on the test set of 7-SCENES. In both cases, we compute the ground truth bearing landmark vector using the ground truth
camera poses and the selected points’ 3D locations. For SLD, we only compute the error for the detected landmarks whose heatmap peak
value is > 0.2. For both NBE and SLD, we observe that the accuracy on 7-SCENES is higher than on the more challenging INDOOR-6
dataset. Results in Table 1 and 4 in the main paper also indicates that the pose accuracy is strongly correlated with bearing accuracy.

curacy than DSAC* on all scenes at all thresholds. In Fig-
ure 12, we show failure examples which are mainly due to
an insufficient number of visible landmarks. However, as
discussed in the main paper, the benefit of combining HLoc
and SLD is clear, and HLoc+SLD outperforms HLoc by a
notable margin on the scene2 and scene5.

1.3. Bearing Landmark Error for NBE and SLD

SLD is much more accurate than NBE. We present
the angular error (in degrees) for the predicted bearing
landmark by NBE and SLD on the test set of INDOOR-6
and 7-SCENES in Table 1 and Table 2 respectively. We
compute the ground truth bearing landmark vector using
the ground truth camera poses and the 3D location of the
selected landmarks. There is no ground truth landmark
visibility for the test set images, so, for SLD, we compute
the error for the detected landmarks whose heatmap peak
value is greater than 0.2. First, we note that heatmap-based
SLD achieves sub-degree accuracy; e.g., median angular
error ranges from 0.22 to 0.3 degrees on the INDOOR-6
and 0.11 to 0.29 degrees on the 7-SCENES.1 In contrast,
regression-based NBE while attaining 100% recall has
much lower bearing accuracy. Thus, to obtain both high
accuracy and high recall, one needs to combine the global
(NBE) and local (SLD) predictions.

INDOOR-6 is more challenging than 7-SCENES. In both
cases of NBE and SLD on the 7-SCENES dataset, we ob-

1Since we cannot show the recall of the detected landmarks due to the lack
of ground truth visibility on test set, we instead present the percentage of
images that observe more than 8 landmarks in the main paper (see Table 2
in the main submission). This metric is strongly correlated to the recall
and directly influences the camera pose estimation.

serve that the overall accuracy is significantly higher than
on the INDOOR-6 dataset; e.g., the median of angular error
of SLD on 7-SCENES is roughly half those in INDOOR-6,
suggesting that our dataset is more challenging than the 7-
SCENES dataset. In addition, by incorporating Table 1 and
Table 4 in Section 4 (camera pose estimation on INDOOR-
6 and 7-SCENES, respectively), we can conclude that the
camera pose accuracy is highly dependent on the accuracy
of the bearing landmark vectors, suggesting that one future
research direction for improving camera pose estimation is
to increase the accuracy and recall on the landmark bearing
vector prediction.

2. Qualitative Results

In this section, we first discuss some features of our
INDOOR-6 dataset (Section 2.1). We then present more re-
sults from our landmark selection approach (Section 2.2).
Finally, we show extensive qualitative results for several test
images from INDOOR-6, which includes visualizations for
the detected landmarks and for assessing the accuracy of the
estimated camera pose (Figures 6–11).

Supplementary video. In the supplementary video, we
show landmarks detected by SLD on some 30 FPS video
segments from the test sequences for various scenes.
Specifically, we visualize the predicted heatmap values for
each landmark obtained using the SLD architecture. We can
observe that certain landmarks have strong and stable col-
ors in the videos. These are the ones reliably detected on
a series of subsequent frames. The presence of flickering
and lighter color tones indicate that the landmark detections
have higher uncertainty and are sometimes not detected.
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2.1. Dataset

In this section, we discuss some features of our INDOOR-
6 dataset. As discussed in the main paper, our dataset con-
tains multiple sequences from the same scene that were
recorded at different times of day over a period of sev-
eral days. These images contain noticeable lighting vari-
ations and were captured under indoor lighting or low-light
conditions. The scenes depict real homes where the scene
changes with time, and there are many examples of non-
stationary objects being moved and doors and windows be-
ing opened and closed. Figure 3 shows some example im-
ages from scene1, scene4, and scene5.

We generate the pseudo ground truth camera poses for
the train and test images via a two-step process. We first
run COLMAP [5] only on the train images and use that re-
construction to select landmarks and derive the poses of the
train images. Next, we run COLMAP on all the images in
both the train and test set and obtain a second reconstruction
that we robustly register to the first one by estimating a 3D
similarity transformation. By employing this two-step pro-
cess, we ensure that our landmarks and the models trained
to detect them are derived solely from the train images,
while ensuring that the camera poses for the test images
are estimated quite accurately. Finally, the reconstructions
are scaled to real-world dimensions using measurements of
known objects.

2.2. Landmark Selection

We present the qualitative results for the selected land-
marks by Algorithm 1 (see Section 3.5) in Figures 4–5.
Specifically, Figure 4 shows the top-50 landmarks with
highest salient scores from the training point cloud. We ob-
serve that our algorithm selects the landmark that ensures
uniform coverage over the entire scene. Note that having
multiple episodes per scene allows us to select highly salient
landmarks that are likely to be stationary and recognizable
at different times (see the color squares on Figures 6–11).

However, it is evident that with 50 landmarks, one cannot
ensure a robust camera localization due to an insufficient
number of visible landmarks (≥ 8) for most viewing direc-
tions. Figure 5 illustrates the effect of scene coverage when
selecting more landmarks (200, 300) on scene5 and scene6.
Note that for scene5, the landmarks have a pretty uniform
distribution, which is desirable. Whereas, in scene6, the
non-homogeneous point distribution in the original SfM
point cloud and the textureless surfaces in the scene leads
to a non-uniform distribution of landmarks which are clus-
tered into multiple dense areas (especially when 300 land-
marks are selected). The low coverage is partly responsible
for low recall on scene6. Finally, although selecting more
landmarks improves scene coverage, training the network to
accurately distinguish visually similar landmarks becomes
challenging. Thus, it is worth exploring new tightly cou-

pled strategies to jointly select landmarks during the train-
ing pipeline.
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Figure 3. INDOOR-6 DATASET: Each row shows a test image and three overlapping training images for the scene1, scene4, and scene5.
These images demonstrate the presence of notable illumination variation; e.g., induced by time-of-day, changes in scene geometry caused
by furniture or objects being moved, windows and doors being opened and closed, and other forms of scene dynamics.
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scene1 scene2

scene3 scene4

scene5 scene6

Figure 4. Top-50 selected scene landmarks. We visualize the 3D locations of the top-50 landmarks selected by our method for the scenes
in the INDOOR-6 dataset. The colored squares indicate different landmarks, and they are shown overlaid on the 3D point cloud obtained by
running SfM on the training images. The selected landmarks mostly lie on scene surfaces or objects which did not move between multiple
episodes in the training sequences (wall hangings, stationary furniture, etc.).
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scene5 (top-50) scene6 (top-50)

scene5 (top-200) scene6 (top-200)

scene5 (top-300) scene6 (top-300)

Figure 5. Varying the number of scene landmarks. We show the top-50, 200, and 300 landmarks selected by our method on the scene5
and scene6 scenes. Note that the top 200 here includes the top 50, and so on. Selecting more landmarks improves scene coverage and pose
recall but accurately distinguishing them from one another can also become challenging.
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(a) (b) (c)

Figure 6. Qualitative results (scene1). Each row shows (a) a query image from the test set with SLD landmark detections (shown as
colored squares); (b) the rendering of the SfM point cloud obtained from training images, projected using the camera pose estimated by our
proposed NBE+SLD method; and (c) an overlay of the rendering on the query image. The point cloud is not used by our method. They are
rendered only for the purpose of visualization to assess the accuracy of the pose estimate. The images contain dramatic illumination changes
in this scene, ranging from strong sunlight to low-light at night. Our method detects several landmarks despite the lighting variations.
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(a) (b) (c)

Figure 7. Qualitative results (scene2): Each row shows (a) a query image from the test set with SLD landmark detections (shown as
colored squares); (b) the rendering of the SfM point cloud obtained from training images, projected using the camera pose estimated by our
proposed NBE+SLD method; and (c) an overlay of the rendering on the query image. The point cloud is not used by our method. They are
rendered only for the purpose of visualization to assess the accuracy of the pose estimate. On this scene, often too few landmarks (≤ 8)
are detected by SLD. Thus, the pose is often estimated using both SLD detections and NBE bearing predictions.
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(a) (b) (c)

Figure 8. Qualitative results (scene3): Each row shows (a) a query image from the test set with SLD landmark detections (shown as
colored squares); (b) the rendering of the SfM point cloud obtained from training images, projected using the camera pose estimated by our
proposed NBE+SLD method; and (c) an overlay of the rendering on the query image. The point cloud is not used by our method. They are
rendered only for the purpose of visualization to assess the accuracy of the pose estimate.
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(a) (b) (c)

Figure 9. Qualitative results (scene4): Each row shows (a) a query image from the test set with SLD landmark detections (shown as
colored squares); (b) the rendering of the SfM point cloud obtained from training images, projected using the camera pose estimated by our
proposed NBE+SLD method; and (c) an overlay of the rendering on the query image. The point cloud is not used by our method. They are
rendered only for the purpose of visualization to assess the accuracy of the pose estimate. The last row shows an example with noticeable
scene change: the table cloth wasn’t present earlier and the chairs were in different positions in the training sequences. Our method,
however, uses persistent landmarks in the background to compute an accurate pose.
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(a) (b) (c)

Figure 10. Qualitative results (scene5): Each row shows (a) a query image from the test set with SLD landmark detections (shown as
colored squares); (b) the rendering of the SfM point cloud obtained from training images, projected using the camera pose estimated by our
proposed NBE+SLD method; and (c) an overlay of the rendering on the query image. The point cloud is not used by our method. They are
rendered only for the purpose of visualization to assess the accuracy of the pose estimate. These images show SLD detections on the same
objects and surfaces (photographs, wall hangings, sofa, door corner) in different images where the lighting varies considerably.
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(a) (b) (c)

Figure 11. Qualitative results (scene6): Each row shows (a) a query image from the test set with SLD landmark detections (shown as
colored squares); (b) the rendering of the SfM point cloud obtained from training images, projected using the camera pose estimated by
our proposed NBE+SLD method; and (c) an overlay of the rendering on the query image. The point cloud is not used by our method. The
point cloud rendering is used purely for visualization to confirm the accuracy of the pose estimate.
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(a) (b) (c)

Figure 12. Failure Examples: Each row shows (a) a query image from the test set with SLD landmark detections (shown as colored
squares); (b) the rendering of the SfM point cloud obtained from training images, projected using the camera pose estimated by our
proposed NBE+SLD method; and (c) an overlay of the rendering on the query image. The point cloud is not used by our method. Our
method can be inaccurate when a sufficient number of landmarks are not detected and NBE bearing predictions are also not accurate
enough. Some failures are shown (top to bottom) – insufficient landmarks and too few training images observing floor (scene2), laundry
room (scene1), and hallway (scene6); too dark (scene5); and high dynamic range-induced false detections (scene3).
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