
2756 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 5, MAY 2023

Optimizing Fiducial Marker Placement for
Improved Visual Localization

Qiangqiang Huang , Joseph DeGol, Victor Fragoso , Sudipta N. Sinha , and John J. Leonard , Fellow, IEEE

Abstract—Adding fiducial markers to a scene is a well-known
strategy for making visual localization algorithms more robust.
Traditionally, these marker locations are selected by humans who
are familiar with visual localization techniques. This letter explores
the problem of automatic marker placement within a scene. Specif-
ically, given a predetermined set of markers and a scene model,
we compute optimized marker positions within the scene that can
improve accuracy in visual localization. Our main contribution is
a novel framework for modeling camera localizability that incor-
porates both natural scene features and artificial fiducial mark-
ers added to the scene. We present optimized marker placement
(OMP), a greedy algorithm that is based on the camera localiz-
ability framework. We have also designed a simulation framework
for testing marker placement algorithms on 3D models and images
generated from synthetic scenes. We have evaluated OMP within
this testbed and demonstrate an improvement in the localization
rate by up to 20 percent on four different scenes.

Index Terms—Localization, computer vision for automation,
landmark deployment, fiducial markers.

I. INTRODUCTION

V ISUAL localization is a foundational technique for
AR/VR, autonomous driving, and robotic navigation and

manipulation. A typical problem in visual localization is to
estimate the camera pose of a query image, provided a pre-built
map. While the problem has long been investigated in many
fields [2], visual localization still suffers due to challenging
scenes such as textureless walls and repetitive structures (e.g.,
Rooms A and B in Fig. 1). One common solution to these
challenges is to place fiducial markers as additional texture
and identifiers in the scene [3], [4]; however, placing fiducial
markers in larger environments is a time consuming process
and the resulting performance improvement depends on marker
positions. Thus, optimizing marker placement is valuable for
robust visual localization.
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Fig. 1. Three challenging examples for visual localization. The images on the
left and middle show two almost identical rooms in the scene, whereas the image
on the right depicts a very weakly textured surface. Marker placements1 in this
scene guided by our optimized marker placement approach led to improved
visual localization on these examples.

This work proposes an automatic approach to optimizing
marker placement such that 1) the resulting marker positions
yield improved accuracy in visual localization and 2) a human
user will be able to place markers at positions planned by
the approach (e.g., no markers on the ceiling). Specifically,
the approach computes optimized marker positions, given a
predetermined set of markers and a scene model. The key
contributions of this work include:

1) This is the first work that optimizes marker placement for
visual localization based on scene features and fiducial
markers.

2) We propose a novel framework that models localizability
of camera poses in a scene and computes localizability
scores.

3) We develop a greedy algorithm that optimizes marker
positions with the goal of increased localizability scores.

4) We design a simulation framework for testing marker
placement algorithms on 3D scene models that enables
others to reproduce and build on our work.

5) We demonstrate that optimized marker placement by our
approach can improve the localization rate by up to 20
percent on four different scenes.

II. RELATED WORK

We briefly review some recent work related to mapping and lo-
calization with fiducial markers and marker/landmark placement
optimization. Examples of fiducial markers include tag families

1Fiducial markers in the examples are AprilTags [5] but our algorithm is
general and can be used with any existing family of fiducial markers.
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with explicit IDs (e.g., ArUco markers [6], AprilTag [5], Chro-
maTag [7]) and emerging learning-based marker designs [8].
Fiducial markers are widely recognized as an effective ap-
proach for improving localization and mapping accuracy. DeGol
et al. [4] demonstrate that marker IDs are useful in image match-
ing and resectioning for structure from motion (SfM), leading
to improvements in reconstruction results. The UcoSLAM sys-
tem [3] integrates marker detection with a bag-of-words ap-
proach and presents more robust tracking and relocalization than
SLAM techniques with no marker detection [9], [10]. However,
marker placements in these SfM or SLAM systems are manually
determined and not planned by algorithms.

Existing work about marker deployment focuses on robotic
localization without considering scene features [11], [12], [13].
Beinhofer et al. [14] explore optimal placement of artificial
landmarks such that a robot equipped with range and/or bearing
sensors repeatedly follows predetermined trajectories in planar
environments with improved accuracy. Meyer-Delius et al. [15]
introduce a measure that defines the uniqueness of robot poses
in the context of Monte Carlo localization using laser scanners
and then propose a greedy algorithm to incrementally select
landmark locations for maximizing the measure. While we find
the greedy algorithm is similar to ours, it is not straightforward
to apply the measure to visual localization using images and
scene features. Lei et al. [16] investigate landmark deployment
for poses on SE(3) and demonstrate placing fiducial markers
in a cubic environment; however, features in the scene are not
involved in optimizing the marker placement.

III. METHODS

We aim to compute k 3D locations in the scene for placing
k fiducial markers such that after marker placement, the cam-
era localization performance improves for query images from
anywhere within the scene. In summary, we solve the global
search of optimal k locations by a greedy algorithm that seeks
one marker placement each time.

A. Assumptions

This work makes two assumptions: 1) A textured 3D model of
the scene is available, and 2) markers and cameras are located on
a 3D plane parallel to the ground plane at roughly the eye level of
a person with average height. Note that the textured model can be
a 3D simulation environment or a dense reconstruction of scenes.
We will collect images (e.g., RGB, depth, and surface normal)
and corresponding camera poses from the model and take them
as input to our approach for optimizing marker placement. The
second assumption ensures that our marker placement will be
reachable to a human user and constrains the number of feasible
camera and marker locations for computational efficiency.

B. Key Elements of Proposed Approach

Fig. 2 shows an overview of our approach, which is composed
of three key elements: 1) discretization, 2) evaluation of camera
localizability, and 3) a greedy algorithm for selecting marker
placements.

1) Discretization: We first convert the ground plane in the
3D model to a discretized space of camera and marker poses, as
shown in Fig. 3. The conversion is implemented by occupancy
grid mapping. Centers of unoccupied grid cells are designated as
feasible camera locations (dots in Fig. 3) while scan points form

Fig. 2. Overview of our approach. We first create a set of feasible camera poses
and marker poses by discretizing space in the 3D model. Then we evaluate
localizability scores of the feasible camera poses and update the scores once
a feasible marker pose is selected to place a marker. The marker placement
is selected by a greedy algorithm as the best trial out of trial placements in the
vacancies (unselected marker poses). These trial placements are ranked by gains
of localizability scores.

Fig. 3. Discretization of a model from the Habitat-Matterport 3D dataset [17].
We select a ground plane in the 3D model at roughly eye level of a human user.
The discretized space of the ground plane consists of feasible marker poses (red
arrows), which are sampled from scan points on the ground plane perimeter, and
feasible camera locations (blue dots), which are centers of unoccupied cells in
the 2D discrete grid.

the perimeter of the free space (lines in Fig. 3). We uniformly
downsample the scan points to generate a set of feasible marker
poses M (arrows in Fig. 3) whose orientations are determined
by surface normals in the 3D model. Note that one can choose
other ways to select feasible marker poses and then still apply
our marker placement algorithm. For example, the feasible
marker poses can be further refined by incorporating semantics
and physical constraints. It is possible that the algorithm could
produce a marker placement in an infeasible location, although
we found this was rare. Even so, we have done a sensitivity study
showing that we can place the marker nearby the exact location
and still get most of the gain2. We derive a set of feasible camera
poses C from the feasible camera locations. Each of the camera
locations yields n camera poses whose optical axes are parallel

2A sensitivity study about the influence of position and size deviations of
markers on localization performance is available in the supplement [1].
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Fig. 4. Evaluation of localizability scores and the information gain brought by a marker placement. On the left we show a grid of feasible camera poses. Feasible
camera poses are positioned at cell centers with orientations shown as the red arrows. The field of view of camera pose c covers points p1, p2, and p3 in the 3D
model and a marker placement on the discretized perimeter of the level set of the ground plane. We synthesize measurements z of the points to create a camera
localization problem using scene features. The problem is represented by factor graph 1 and distribution p(C|z) by which we can compute the entropy as well
as the localizability score of the camera pose seeing no markers. We penalize contributions of repetitive structures on the localizability score via the analysis of
feature similarity. With additional measurements m to the marker, we create another localization problem which is represented by factor graph 2 and distribution
p(C|z,m). The new problem leads to a new entropy and a new localizability score.

to the ground plane and evenly spaced in [0, 2π] (e.g., the default
n = 8).

2) Camera Localizability Score: We compute camera local-
izability scores by evaluating uncertainty in localizing feasible
camera poses. Specifically, for any feasible camera pose c ∈ C
(the corresponding random variable is C), we synthesize mea-
surements z to create a camera localization problem, estimate
the distribution of the camera pose p(C|z), and define the
localizability score of the camera pose l(c) as the negation of
the entropy of the distribution, as shown in

l(c) = −H(p(C|z)) = E[ln p(C|z)]. (1)

If a new fiducial marker is added in the field of view (FOV)
and range of the camera pose, the new synthetic measurement
regarding the marker will change the entropy of the camera
pose distribution, resulting in an information gain that quantifies
the impact of the marker placement. Fig. 4 summarizes steps
for evaluating the localizability score and the information gain.
These steps are explained in detail in following paragraphs.

Synthesized data for computing the localizability score: The
leftmost part of Fig. 4 illustrates 3D points and a feasible marker
pose (i.e., trial marker placement) that are in the FOV/range of a
feasible camera pose3. We collect RGB and depth images at the
camera pose in the 3D model. These images will be used to com-
pute 3D points and descriptors of features (e.g., SIFT [18]). We
use these known poses and points to synthesize measurements
and estimate probability density functions (PDFs) of the camera
pose variable. Measurements z in Fig. 4 contain the camera
pose, the 3D points, and bearings between them. Thus the PDF
p(C|z), which is represented by factor graph 1, expresses the
distribution of the camera pose constrained by the 3D points.
Placing a marker in the FOV/range of the camera leads to new
synthetic measurements m of the marker pose and the relative
pose between the marker and the camera. As a result, the camera
pose is further constrained by measurementsm thus is described
by a new PDF p(C|z,m) represented by factor graph 2 in Fig. 4.

3In practice, one can further refine marker poses in the FOV by considering
marker sizes and rejecting corner cases that may fail the detection of markers.
The cases include marker poses that are too close to the boundary of the view
frustum of the camera.

Algorithm 1: Optimized Marker Placement (OMP).

We use an approach that is similar to the one proposed by
Stachniss et al. [19] to define the information gain of a marker
placement. The information gain is defined as the change of
entropy that the marker placement m yields at the camera pose
c, as seen in

I(m, c) = H(p(C|z))−H(p(C|z,m)). (2)

Fig. 5(a) shows localizability scores of camera poses in the
original ground plane with no marker placement. Note that the
score at a dot in the figure is the mean score of camera poses with
all feasible orientations. Fig. 5(b) shows localizability scores
after adding a marker (the arrow) to the ground plane perimeter.
The scores increase in the region around the marker, indicated
by the brighter dots in the region in Fig. 5(b) and the information
gain in Fig. 5(c).

Analysis of feature similarity of 3D points: Repetitive struc-
tures in scenes cause similar features across RGB images and
can result in localizing to a wrong location. To reduce the
contribution of repetitive structures to localizability scores, we
penalize the localizability score if similar features appear in the
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Fig. 5. Results of localizability scores: (a) no markers, (b) a trial marker placement (red arrow), and (c) the information gain. The score (or gain) at a dot is the
mean score (or gain) of camera poses at the dot with all feasible orientations. Darker dots stress low localizability scores in (a) and (b) and high information gains
in (c). This trial turns out to be the first marker in the optimized placement (see the Apartment in Fig. 9).

FOV of the camera. Specifically, when modeling 3D points with
similar features in factor graphs, we set greater uncertainty in
noise models of 3D point factors to encode the fact that similar
3D points are ambiguous and less informative. Equation (3)
shows the 3D point factor that formulates the difference between
the noisy 3D location p̃ and true 3D location p using a Gaussian
distribution

p(p̃|p) = N (p̃− p;0,Σp) (3)

where Σp is the covariance we set for modeling noise. For
example, in the leftmost part of Fig. 4, points p1 and p3 are
visually similar, so we set big covariances in 3D point factors
of p1 and p3. Informally, factors with big covariances impose
loose constraints on the camera pose distribution, leading to
lower contributions on the localizability score. We perform an
analysis of feature similarity of 3D points to determine noise
models in 3D point factors (i.e., Σp in (3)), as shown in the
flow chart in Fig. 4. The analysis is to count the number of
similar 3D points to any 3D point. The resulting covariance Σp

is formulated as

Σp = (1 + np)Σ0 (4)

where Σ0 is a base covariance (e.g., diag(2.5, 2.5, 2.5)×
10−3 m2 in our experiments) and np denotes the number of
similar 3D points to the query point p. 3D points observed by
all feasible camera poses are filtered to select similar ones of the
query point. The selection is determined by two criteria: 1) the
selected points have similar descriptors to the query point and
2) the selected points are not too close to the 3D location of the
query point. The intuition is that, if two areas in the scene look
similar but they are far away from each other, a wrong place
recognition would incur a huge localization error.

Estimation of camera pose distributions: We use the Laplace
approximation [20, Ch. 4.4] to estimate a Gaussian distribution
that approximates the camera pose distribution encountered in
the synthetic localization problem. The mean of the Gaussian
is the known feasible camera pose so the covariance Σ is the
only unknown. The covariance can be approximated by an
estimated Hessian of the negative logarithm of the camera pose
distribution at the mean (see [21, Sec. 2] for the estimation of
the covariance). Thus the entropy encountered in the synthetic
localization problem can be approximated by

H(p(C|·)) ≈ 1

2
ln |Σ|+ d

2
(1 + ln(2π)) (5)

where the dimensionality d is 6 for 6DOF poses.
3) The Greedy algorithm4: The algorithm sequentially se-

lects k poses from feasible marker poses M (see Algorithm 1).

4Discussion about the complexity of the algorithm and the possibility of
generalizing the greedy algorithm is available in the supplement [1].

The algorithm executes k loops to search the best k poses. In
each loop, we update localizability scores, tentatively place a
marker at any feasible marker pose, and compute localizability
gains of trial marker placements. The best pose that earns the
highest localizability gain will be removed from feasible marker
poses and be permanently occupied by a marker. The marker will
influence future updates of localizability scores.

We summarize information gains at all feasible camera poses
in the scene, using a single scalar quantity that we refer to as lo-
calizability gain. Informally, one could think of the localizability
gain as the reward for placing an additional marker at a specific
position. The localizability gain of any marker placement m is
defined as the qth percentile of information gains that marker m
yields at all feasible camera poses C, as seen in

g(m) = inf
{
i ∈ R : FI(i) ≥ q

100

}
, (6)

where FI(·) is the cumulative distribution function (CDF) after
sorting the information gains at all camera poses

I = {I(m, c) : c ∈ C}. (7)

The choice of percentile q ∈ [0, 100] is crucial and dependent
on environments (i.e., the ground plane). For example, in a
large environment where any marker is only visible to a small
fraction of feasible camera poses, a low percentile q would likely
incur zero localizability gains for all markers since camera poses
seeing no markers receive zero information gains and constitute
a great portion of the information gain distribution I.

We use an adaptive approach to determine the percentile q
before computing the localizability gain. The approach intro-
duces a hyperparameter v ∈ [0, 100] and ensures that the most
visible v percent of markers earn nonzero localizability gains.
A high v allows more markers, even the ones stuck in corners,
to effectively join in the selection of best marker while a low
v favors the most visible ones among feasible marker poses. In
the ground plane space, for any marker m, we can find a set of
affected camera poses Cm that are supposed to see the marker
(i.e., nonzero info. gain). We can derive a CDF FP (p) using
percentages of affected camera poses for all markers

P =

{ |Cm|
|C| × 100 : m ∈ M

}
. (8)

To ensure only the most visible v percent of markers earn
nonzero localizability gains, the percentile q is determined by the
(100− v)th percentile in percentages of affected camera poses,
as seen in

q = 100− inf

{
p ∈ [0, 100] : FP (p) ≥ 100− v

100

}
. (9)

(9) indicates q is a non-decreasing function of v. When v
approaches 100, q approaches 100 as well so only markers that

Authorized licensed use limited to: MICROSOFT. Downloaded on September 26,2023 at 16:53:36 UTC from IEEE Xplore.  Restrictions apply. 



2760 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 5, MAY 2023

Fig. 6. Histograms for the HM3D apartment model: (a) percentage of affected
camera poses and (b) information gains at camera poses yielded by a marker.
The most visible 90% markers (i.e., v = 90) means 10th percentile in (a),
determining the percentile q = 99.76 by (9). The 99.76th percentile in (b)
indicates a localizability gain 25.21 of the marker by (6).

Fig. 7. Flowchart of our system for performing camera localization experi-
ments. Scenes with different marker placements share the same set of camera
poses for acquiring test images and the same localization module.

Fig. 8. Localization module using fiducial marker detection. The numbers
indicate the order of different operations.

earn a greater maximum in information gains will be considered
in the best marker selection (see (6)); when v approaches 0, q
approaches 0 as well so the best marker will only be selected
from markers that influence large areas. Thus the choice of
hyperparameter v can reflect the trade-off between helping the
worst single camera pose and influencing the most camera poses.

Fig. 6 shows an example for computing the percentile q and
the localizability gain for the marker placement in Fig. 5. We
set v = 90 as the default setting so the most visible 90% mark-
ers receive nonzero localizability gains and are effective best
marker candidates. This setting results in a marker placement
strategy that tends to support worst camera poses instead of area
coverage, as shown in the optimized marker placement for the
apartment model in Fig. 9. No markers are placed in the two
big rooms on the right of the apartment since (i) camera poses

in these rooms already enjoyed good localizability scores (see
Fig. 5(a)) and (ii) a large hyperparameter v does not emphasize
area coverage.

IV. EXPERIMENTAL SETUP

A. Implementation

We implemented all three key elements and Algorithm 1 in
Section III-B in Python with assistance of a few open source
software packages. We used the Unreal Engine 4.27 [22] and the
AirSim library (v1.8.1) [23] to simulate and collect images from
3D models. We used the Open3D library [24] to downsample
scan points to get candidate marker locations. We used the
GTSAM library [25] to create factor graphs and estimate covari-
ances in Gaussian approximations of camera pose distributions.
The SIFT feature [18] was used throughout our experiments.

Additionally, we implemented a simulation system for testing
marker placement algorithms and a camera localization module
for estimating camera poses of test images. Fig. 7 presents a
flowchart of the system. The system adds markers to a scene
model at positions planned by marker placement algorithms and
then generates test images from the same set of camera poses
for different marker placements for the fairness in comparison.
We stress three advantages of the simulation system over real
world pipelines for performing camera localization experiments:
1) reproducible data collection by other researchers for future
development of marker placement algorithms, 2) a large num-
ber of test images that cover the scene, 3) consistent camera
poses for generating test images in scenes with different marker
placements.

B. Evaluation

1) Methods for Comparison: We compare our algorithm
OMP with 1) no marker placement, 2) random marker place-
ments, 3) uniform marker placements, and 4) markers placed
by a human. Random marker placements refer to uniformly
weighted samples from feasible marker poses. Uniform place-
ments distribute the markers roughly uniformly along the
perimeter of the environment (see [15] for details). We generated
5 versions of random and uniform placements for each scene
and all placements were manually inspected in scene models to
ensure reasonable quality. The comparison with humans is only
conducted in the real experiment. The human prioritizes centers
in less textured areas.

2) Scenes: The method comparison is performed on four
scenes: apartment, studio, office, and room, as seen in Fig. 9. The
first two are pre-built dense maps of realworld spaces, provided
by the Habitat-Matterport 3D (HM3D) Research Dataset [17],
while the third model is an Unreal Engine simulation environ-
ment that resembles typical realworld offices.5 The first three are
for simulated experiments. The last one is a motion capture room
at MIT for the real experiment [1]. The textured mesh of the room
was created by fusing RGB-D images from groundtruth poses,

5The serial number of the apartment model is 00770-NBg5UqG3di3 in the
HM3D dataset and that of the studio model is 00254-YMNvYDhK8mB. We
inspected all scenes in the dataset and chose these two as representatives
of medium and large scenes with textureless areas and potential perceptual
aliasing. The office model is the ThreeDee Office project in the Unreal Engine
Marketplace.
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Fig. 9. Results for all scenes: (a) 3D models, (b) ground plane space with no markers where darker dots indicate lower localizability scores, (c) optimized marker
placements where the red arrows represent optimized marker placements and the numbers beside the arrows indicate the order of marker placements, and (d) the
recall in camera localization experiments. We exclude camera poses near the bottom of the room where a table occupies.

TABLE I
SPECIFICS OF SCENES

using the volumetric fusion [26] and marching-cubes algorithms
and the screened Poisson surface reconstruction [27]. Table I lists
specifics of these models.

3) The Localization Module: Fig. 8 presents the flowchart of
our localization module. The localization module is similar to
standard approaches [28] but with an extra function of fiducial
marker detection, provided by the AprilTag library [5]. The
tag detection and VLAD descriptors [29] were sequentially
employed to find matched images in the map data. Camera poses
were estimated using P3P [30] with RANSAC [31] followed
by Levenberg-Marquardt optimization [32]. The rotation error
δR is defined as the angular distance between the estimated
rotation matrix R̂ and the groundtruth rotation R while the
translation error δt is defined as the Euclidean distance between
the estimated translation t̂ and the groundtruth translation t, as
seen in

δR =

∣∣∣∣arccos

(
tr(R̂TR)− 1

2

)∣∣∣∣, (10)

δt =
∥∥t̂− t

∥∥
2
. (11)

4) The map and Test Data: In simulated experiments, the
camera was set to a FOV of 90 degrees and a range of 10 meters
(RGB res. 600 × 450, depth res. 300 × 225). The camera poses
for collecting the map data are the same as the feasible camera
poses in the ground plane space. The camera poses for collecting
test images are sampled from the feasible camera poses with
weights and then perturbed by translation and rotation noises
that are subject to a uniform distribution in [−0.5, 0.5]. We
intend to sample more densely from the difficult areas, which
are of our interest, so the weights in the sampling correlate
with localizability scores for generating more test images around
low-scoring camera poses6. Let L = {l(c) : c ∈ C} be the set
of localizability scores of feasible camera poses in the ground
plane space with no markers. The weights are defined as

W =
{
2l� − l − l(c) : c ∈ C} , (12)

where l� is the maximal score inL and l is the mean of all scores.
Thus all weights will be non-negative and a lower score incurs
a greater weight. In the real experiment, we used the Realsense
L515 camera for RGB-D data (image res. 1280 × 720) and
the OptiTrack system for groundtruth poses. The map and test
data were sampled along two lawn-mower paths around feasible
camera poses [1].

V. RESULTS

We present two sections of results. In the first section, we
present results comparing different marker placement methods.

6Results on test images uniformly sampled are available in [1].
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Next, we show a parameter study about factors that can affect
our algorithm and the localization performance. The main metric
we analyze is the recall, which is defined as the percent of
test images localized within certain thresholds of errors: (5 cm,
5 deg) for simulated experiments and (30 cm, 10 deg) for the real
experiment considering errors in the dense map, sensor noise,
and large textureless areas. The default hyperparameter v is 90.

A. Comparison of Marker Placement Methods

As optimized marker placements in Fig. 9 show, our algo-
rithm focuses on placing markers around low-scoring areas
and improves mean localizability scores by a large margin.
For example, the largest room in the studio model only receives
a single marker (marker 9 on the top right of the studio) since
the room already possesses good localizability scores even with
no markers.

Optimized marker placements consistently outperform no
marker placement, random placements, and uniform place-
ments on the recall. After placing 20 markers, our algorithm
improves the recall by over 1.5 percentages for the apartment
model, 3.0 percentages for the studio model, 20.0 percentages
for the office model, and over 20.0 percentages for the room
scene. Note that the area of the apartment model is very big and
the model has attained a high recall 85% with no assistance of
markers so the increment of recall for the apartment model was
expected to be lower than that for the other models. The real
experiment in the room scene shows that our algorithm is on
par with markers placed by a human. Although our experiment
demonstrates the efficacy of optimizing marker placements in
3D models for realworld applications, we emphasize that the
efficacy relies on the similarity between rendered and real im-
ages. Vision features in rendered images can be affected by many
factors including mesh quality and lighting. For example, we
covered the glass door in the room by a well-textured poster to
reduce the difficulty in 3D reconstruction. In addition, if one has
quality real RGB-D data at feasible camera poses, the textured
mesh is not needed for using our marker placement algorithm.

B. Parameter Study

We design four experiment groups and change one of the
default parameters in each experiment group. The experiment
groups are 1) different values of v in the greedy algorithm, 2)
enabling/disabling marker detection in the localization module,
3) low-scoring/uniform test data and 4) enabling/disabling the
analysis of feature similarity, as seen in Table II. The default
setting is withv = 90, marker detection enabled, the low-scoring
test data that has more test images in low-scoring areas in the
ground plane, and the similarity analysis where similar 3D points
are downweighted in the localizability score. For the parameter
study, we use the office model.

Too large or small values of hyperparameter v incur lower
improvements of the recall. As explained in Section III-B3,
lower v favors markers that cover larger areas while greater v
tends to stress the worst single camera pose. Table II shows that
the default value (v = 90) consistently outperforms small value
50 and large value 99, indicating that the default attains a good
balance between area coverage and helping the worst cases.

The localizability score can be a good indicator of local-
ization errors. Table II shows that uniform test samples enjoy
greater recall than test samples that stress low-scoring areas by at

TABLE II
PARAMETER STUDY ABOUT THE HYPERPARAMETER v, THE TEST DATA,

ENABLING/DISABLING MARKER DETECTION, AND ENABLING/DISABLING THE

SIMILARITY ANALYSIS

Fig. 10. Parameter study: (a) the optimized marker placement after disabling
the similarity analysis and (b) scatter plot of the localizability score and the log
of estimation error of test images. The error is computed as the double Geodesic

distance,
√

δ2R + δ2t . To avoid outliers, samples are admitted to the plot only
if the translation and rotation errors are within (50 cm, 50 deg). The Pearson
correlation coefficient and p-value for testing non-correlation is (−0.41, 2.4×
10−55).

least 5 percentages. Fig. 10(b) indicates a statistically significant,
negative correlation between the localizability score and the
localization error.

Both the visual appearance and decoded label of markers
are helpful for localization. We disable marker detection in
the localization module (Fig. 8) to investigate its impact on the
recall. Table II shows that markers still improve the recall even
though the detector is turned off. The reason is that the visual
appearance of markers is still helpful for coarse localization and
pose estimation in the localization module.

Deactivating the analysis of feature similarity decreases
the recall. Fig. 10(a) presents the marker placement after dis-
abling the similarity analysis (i.e., no scaling in (4)). The first
five markers remain in the same positions as those guided by the
similarity analysis (Fig. 9(c)). Thus the recall does not change
significantly until placing 10 markers, as shown in the last group
in Table II. The decrease in the recall with no similarity analysis
justifies the efficacy of downweighting similar features in the
computation of the localizability score.

VI. CONCLUSION AND FUTURE WORK

This work provides a promising foundation for optimizing and
evaluating marker placement for improved visual localization.
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Our OMP algorithm defines localizability scores for different
areas in the scene and uses a greedy algorithm to find the best
marker placements in the sense of increased localizability scores.
We applied the OMP algorithm to four scenes and demon-
strated that OMP consistently improves camera localization
recall compared to random and uniform marker placements. We
believe that our marker placement approach is also useful for
SLAM. However, our approach could be further extended to
compute optimal marker placement for specific tasks in SLAM.
One potential idea involves extending the localizability score
to a trackability score that incorporates uncertainty propagation
along a robot path while restricting feasible camera poses to the
operating area of the robot.

The OMP algorithm only considers placing markers in a scene
model (i.e., mapped areas in the scene), however, regions in the
scene which are challenging for mapping are also likely to be
good locations for placing markers. Thus, it would be worth
exploring ways to extend the algorithm to prioritize marker
placements in regions that are either partially or inadequately
mapped. Further research is also needed to compute more ac-
curate localizability scores and explore more efficient optimiza-
tion methods beyond the greedy algorithm, including: (1) joint
optimization of marker poses and sizes, (2) extending the single-
layer ground plane to multi-layer planes for deploying markers
in multi-storey structures, (3) using non-Gaussian distribution
estimation techniques to compute localizability scores, and (4)
applying submodular optimization to jointly select multiple best
markers together with fewer iterations.

REFERENCES

[1] Q. Huang, J. DeGol, V. Fragoso, S. N. Sinha, and J. J. Leonard, “Opti-
mizing fiducial marker placement for improved visual localization,” 2023,
arXiv:2211.01513.

[2] Z. Zhang, T. Sattler, and D. Scaramuzza, “Reference pose generation for
long-term visual localization via learned features and view synthesis,” Int.
J. Comput. Vis., vol. 129, no. 4, pp. 821–844, 2021.

[3] R. Munoz-Salinas and R. Medina-Carnicer, “UcoSLAM: Simultaneous
localization and mapping by fusion of keypoints and squared planar
markers,” Pattern Recognit., vol. 101, May 2020, Art. no. 107193.

[4] J. DeGol, T. Bretl, and D. Hoiem, “Improved structure from motion
using fiducial marker matching,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 281–296.

[5] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Proc.
IEEE Int. Conf. Robot. Autom., 2011, pp. 3400–3407.

[6] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognit., vol. 47, no. 6, pp. 2280–2292,
2014.

[7] J. DeGol, T. Bretl, and D. Hoiem, “ChromaTag: A colored marker and
fast detection algorithm,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 1481–1490.

[8] Z. Zhang, Y. Hu, G. Yu, and J. Dai, “DeepTag: A general framework for
fiducial marker design and detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 3, pp. 2931–2944, Mar. 2023.

[9] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[10] X. Gao, R. Wang, N. Demmel, and D. Cremers, “LDSO: Direct sparse
odometry with loop closure,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2018, pp. 2198–2204.

[11] Y. Chen, J.-A. Francisco, W. Trappe, and R. P. Martin, “A practical
approach to landmark deployment for indoor localization,” in Proc. IEEE
Commun. Soc. Sensor Ad Hoc Commun. Netw., 2006, vol. 1, pp. 365–373.

[12] M. P. Vitus and C. J. Tomlin, “Sensor placement for improved robotic
navigation,” in Proc. Robot.: Sci. Syst., 2011, pp. 217–224.

[13] D. B. Jourdan and N. Roy, “Optimal sensor placement for agent
localization,” ACM Trans. Sensor Netw., vol. 4, no. 3, pp. 1–40,
May 2008.

[14] M. Beinhofer, J. Müller, and W. Burgard, “Effective landmark placement
for accurate and reliable mobile robot navigation,” Robot. Auton. Syst.,
vol. 61, no. 10, pp. 1060–1069, Oct. 2013.

[15] D. Meyer-Delius, M. Beinhofer, A. Kleiner, and W. Burgard, “Using
artificial landmarks to reduce the ambiguity in the environment of
a mobile robot,” in Proc. IEEE Int. Conf. Robot. Autom., 2011,
pp. 5173–5178.

[16] Z. Lei, X. Chen, Y. Tan, X. Chen, and L. Chai, “Optimization of directional
landmark deployment for visual observer on SE(3),” IEEE Trans. Ind.
Electron., vol. 70, no. 6, pp. 5994–6003, Jun. 2023.

[17] S. K. Ramakrishnan et al., “Habitat-matterport 3D dataset (HM3D): 1000
large-scale 3D environments for embodied AI,” in Proc. Conf. Neu-
ral Inform. Process. Syst. Dataset. Benchmark. Track (Round 2), 2021,
pp. 1–21,.

[18] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[19] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based explo-
ration using Rao-blackwellized particle filters,” in Proc. Robot.: Sci. Syst.,
2005, vol. 2, pp. 65–72.

[20] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[21] M. Kaess and F. Dellaert, “Covariance recovery from a square root infor-
mation matrix for data association,” Robot. Auton. Syst., vol. 57, no. 12,
pp. 1198–1210, Dec. 2009.

[22] Epic Games, “Unreal engine,” Mar. 2023. [Online]. Available: https://
www.unrealengine.com

[23] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Proc. Field Serv.
Robot., Springer, 2018, pp. 621–635.

[24] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” 2018, arXiv:1801.09847.

[25] F. Dellaert et al., “borglab/gtsam,” May 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.5794541

[26] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proc. Annu. Conf. Comput. Graph. Interact.
Tech., 1996, pp. 303–312.

[27] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Trans. Graph., vol. 32, no. 3, pp. 1–13, 2013.

[28] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse to
fine: Robust hierarchical localization at large scale,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 12716–12725.

[29] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C.
Schmid, “Aggregating local image descriptors into compact codes,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716,
Sep. 2012.

[30] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution clas-
sification for the perspective-three-point problem,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 25, no. 8, pp. 930–943, Aug. 2003.

[31] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated car-
tography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[32] G. Bradski, “The OpenCV library,” Dr Dobb’s J. Softw. Tools, vol. 25,
no. 11, pp. 120–123 2000.

Authorized licensed use limited to: MICROSOFT. Downloaded on September 26,2023 at 16:53:36 UTC from IEEE Xplore.  Restrictions apply. 

https://www.unrealengine.com
https://www.unrealengine.com
https://doi.org/10.5281/zenodo.5794541
https://doi.org/10.5281/zenodo.5794541


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


