PatchMatch-Based Neighborhood Consensus for Semantic Correspondence

Jae Yong Lee¹, Joseph DeGol², Victor Fragoso², Sudipta Sinha²

Semantic Correspondence

Challenges

Large Intra-Class Variation

Ambiguous Dense Annotation

Related work: Neighborhood Consensus Network

Rocco et al. (NeurIPS 2018)

Computing 4D Correlation Map

Computing 4D Convolution

Related work: Neighborhood Consensus Network

Rocco et al. (NeurIPS 2018)

Proposed Method

Learned Scoring Function

Learned Scoring Function

Learned Scoring Function

Learned Scoring Function

Proposed Method

Proxy model for training scoring function

Source

Target

Proxy model for training scoring function

Evaluation Metric: Percent Correct Keypoints (PCK)

$$PCK = \frac{N_{match}}{N_{total}}$$

More Accurate Correspondence Estimation

Evaluation on PF-Pascal Dataset

NC-Net **ANC-Net** Source Image

Our method is more precise, faster, and uses less memory

Evaluation on PF-Pascal Dataset

* All methods using same spatial resolution (25 x 25)

Architecture	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.03$	$\alpha = 0.01$	Time per Pair	Memory
NCNet ResNet 101 Layer 4 (25x25)	79.0%	54.3%	30.9%	4.9%	0.29s	406MB
ANCNet ResNet 101 Layer 4 (25x25)	85.9%	58.1%	31.9%	5.1%	0.33s	1310MB
Ours ResNet101 Layer 4 (25x25)	86.8%	74.5%	58.0%	14.7%	0.09s	273MB

Precision improves with larger window size

Evaluation on PF-Pascal Dataset

* Resnet101 Layer 3 uses spatial resolution of 50x50

Architecture	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.03$	$\alpha = 0.01$	Time per Pair	Memory
NCNet ResNet 101 Layer 4 (25x25)	79.0%	54.3%	30.9%	4.9%	0.29s	406MB
ANCNet ResNet 101 Layer 4 (25x25)	85.9%	58.1%	31.9%	5.1%	0.33s	1310MB
Ours ResNet101 Layer 4 (25x25)	86.8%	74.5%	58.0%	14.7%	0.0 9s	273MB
Ours ResNet101 Layer 3 (50x50)	90.6%	82.4%	71.6%	29.1%	0.96s	2610MB

Our method works on challenging cases

Evaluation on SPair-71k Dataset

Our method is robust under different nuisances

Thank you

Joseph DeGol

Victor Fragoso

Sudipta Sinha

Our code is available at https://github.com/leejaeyong7/patch-match-consensus