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ABSTRACT9

Although adherence to project schedules and budgets is most highly valued by project owners,10

more than 53% of typical construction projects are behind schedule and more than 66% suffer11

from cost overruns, partly due to inability to accurately capture construction progress. To address12

these challenges, this paper presents new geometry- and appearance-based reasoning methods for13

detecting construction progress, which has the potential to provide more frequent progress mea-14

sures using visual data that are already being collected by general contractors. The initial step15

of geometry-based filtering detects the state of construction of Building Information Modeling16

(BIM) elements (e.g. in-progress, completed). The next step of appearance-based reasoning cap-17

tures operation-level activities by recognizing different material types. Two methods have been18

investigated for the latter step: a texture-based reasoning for image-based 3D point clouds and19

color-based reasoning for laser scanned point clouds. This paper presents two case studies for20

each reasoning approach for validating the proposed methods. The results demonstrate the effec-21

tiveness and practical significances of the proposed methods.22

Keywords: Progress monitoring, BIM, images, point cloud, laser scan, 3D reconstruction, material23

classification24
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INTRODUCTION25

Adherence to project schedules and budgets is the most highly valued performance metric26

by project owners (Bevan and Steve 2016). Despite its significance, more than 53% of typical27

construction projects are behind schedule and more than 66% do not meet their budget require-28

ments (Bevan and Steve 2016). Some of the major factors that lead to poor performance on jobsites29

include 1) inconsistency among contractors, subcontractors and owners in terms of how much a30

construction project is faring at any given date, 2) flawed performance management due to lack of31

frequent reporting of actual performance to project teams, and 3) planners’ missed connections to32

most up-to-date construction progress information (Changal et al. 2015).33

Moreover, construction sites are dynamic environments filled with a wide range of dynamic34

objects (e.g., workers and equipment). In addition, project management teams have to deal with35

multiple parties (i.e., owners, themselves, and many trades) constantly updating construction doc-36

uments and schedules. These challenges are likely the cause of stagnant construction productiv-37

ity compared to other industries (e.g. manufacturing almost doubled productivity over the past38

decade (Changal et al. 2015)).39

The following subsection describes gaps-in-knowledge in project controls studied by the re-40

search community.41

Practical and Theoretical Gaps in Project Controls42

Over the past decade, the Last Planner System (LPS) (Kim and Ballard 2010) has emerged43

as a production control theory that can reduce waste during execution of planning through better44

coordination. However, the recent observations from a large number of construction projects with45

LPS have revealed that sustaining commitment to the goals of LPS for a long period of time is46

difficult (Ballard and Tommelein 2012). The recent case studies in (O’Brien et al. 2008) also47

show that many companies still emphasize control related to global project aims and fulfillment of48

contracts rather than production control.49
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Wide gap between long-term & short-term planning (lookahead vs. weekly work planning):50

Implementing LPS improves the reliability of short-term planning; however, without prioritiz-51

ing tasks based on the downstream demand, LPS can not effectively achieve a continuous flow of52

information (Hamzeh and Bergstrom 2010; Sacks et al. 2013). Addressing this gap in performance53

requires having continuous feedback on the most updated state of the tasks and various ongoing54

work packages on the site. The main issue is the cycle time for receiving feedback, which is typi-55

cally the cycle of weekly work planning sessions (i.e. one or two weeks). This time period is too56

long to avoid waste, especially for tasks where their constraints are removed only a few days prior57

to their execution (Sacks et al. 2010b). Managing and responding to the high-level of details in58

production plans are needed daily, if not hourly (Dave et al. 2014; Brodetskaia et al. 2013).59

Limited means of collecting, analyzing, and communicating status information:60

The weekly work plans (WWP) do not have prior provisions for systematic status assessment61

(Sacks et al. 2010b), which according to the Construction Industry Institute (CII), National Re-62

search Council (NRC), National Institute of Science and Technology (NIST), and American Soci-63

ety of Civil Engineers (ASCE), is a key component to continuous improvement (CII 2010; NRC64

2009; NIST 2011; Li et al. 2011).65

Lack of effective methods for collecting status of the work advancement66

Situation awareness is key to prompt and effective onsite decision making. To achieve an67

enhanced awareness on the status of the work advancements, the limitations in methods need to be68

addressed. In today’s best practices, most queries of the as-built conditions are done by traveling69

between a site and trailers to access paper-based documents (Kamat and Akula 2011; Bae et al.70

2012), or by searching through smartphones or tablets which requires specific three-dimensional71

(3D) plan views to be manually generated for each task (Chen and Kamara 2011; Bae et al. 2012).72

This process is time-consuming given thousands of elements on a site (Sacks et al. 2013; Eastman73

et al. 2011). Analyzing performance based on experience is also often prone to errors (Turkan et al.74

2013; Golparvar-Fard et al. 2013; Bosché 2012).75
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Lack of Support for Bringing “Power to the Edge” on Jobsites.76

Since LPS plans are updated weekly, it is difficult to know “who is working on what task in what77

location” on a daily or hourly basis. There is also a major time lag between encountering an issue78

on site and when supervisors are informed (Garcia-Lopez and Fischer 2014). Thus, supervisors79

typically make decisions based on outdated information (Garcia-Lopez and Fischer 2014; Sacks80

et al. 2013). The inability to have two-way communication on task scope, methods, and resources81

also delays approval processes and leads to waste. Bringing Power to the Edge (Alberts and Hayes82

2005)— empowering the individuals who actually do the work– requires enhanced communication83

and removal of constraints for quick and effective onsite decision making. While commercial84

mobile apps (i.e., PlanGrid and Autodesk360) are powerful in decentralizing work tracking and85

shortening time for accessing information, there are still gaps in knowledge on how site feedback86

can be captured and integrated with a Building Information Modeling (BIM)-based tracking system87

on a daily basis (Dave et al. 2014).88

Lack of Methods for Intuitive Visualization of Project Information.89

Despite the benefits of face-to-face discussions in toolbox (daily huddle) meetings, anecdotal90

observations from the recent implementation of LPS show that Last Planners successfully receive91

information on success and failure of their tasks only about 73% of the time during the performance92

review meetings and 60% of workers are not informed about their status (Salem et al. 2005). More-93

over, Salem et al. (2005) report inconsistencies in remembering issues that are discussed during94

these toolbox meetings. For instance, 42% to 100% of planners remembered issues from these95

meetings, while the range was 17% to 86% for workers. Although there is growing recognition96

among researchers that visual anlaytics and visualization tools can improve communication rates in97

and out of the meetings, little is done on formalizing, developing, and validating BIM-based meth-98

ods to benchmark, analyze, and communicate work status and other relevant project information99

in near real-time to both on- and offsite users.100

OBJECTIVES AND CONTRIBUTIONS101

To address the abovementioned gaps in knowledge, researchers have worked on developing102

4 Han, August 7, 2017



frameworks and tools that enable frequent data collection and progress deviation analysis (detailed103

in the Background section). These works aim at achieving a continuous flow of project information104

by analyzing visual data, which will enable a smooth flow of production.105

Figure 1 illustrates how project control tools that visualize as-built and as-planned project infor-106

mation can achieve smooth flow of production. Leveraging these emerging sources of information107

can enable instantaneous project controls through automated and near real-time assessments of108

work-in-progress.109

Achieving this goal can also support root-cause assessment on plan failures, facilitate informa-110

tion flows, and ultimately improve the reliability of weekly work planning. In Particular, it can111

bridge the current knowledge gap and lead to creation of methods for 1) project-level monitoring112

(by providing a mechanism for better understanding how a project compares with others in terms113

of cost, schedule, and labor hours) and 2) enhanced communication (by providing real-time project114

information, improving onsite decision-making and work-sequencing, and fostering collaborative115

partnerships).116

The proposed vision-based progress monitoring method will support project management teams117

by creating Integrated Project Models (IPM) as shown in Figure 1. The main contributions of the118

proposed method are 1) geometry- and appearance-based reasoning of progress detection and 2)119

two alternative approaches for image-based and point cloud-based (i.e., laser scanned) methods.120

An additional contribution is efficient processing (fast computation time) of large point clouds for121

detecting BIM elements.122

BACKGROUND123

Related Work124

With an ever increasing number of visual data available on construction sites due to advances in125

computer vision and 3D imaging technologies, there have been dramatic advances in model-based126

construction progress detection leveraging as-built modeling techniques. Some of these techniques127

use image-based point clouds. Some other techniques use laser scanned point clouds.128
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Image-based Point Clouds129

Siebert et al. (2014) used a camera-equipped Unmanned Aerial Vehicles (UAVs) to capture130

images of earthwork projects for creating 3D maps of the terrain. These surveyed point clouds131

can be used for measuring progress. Similarly, Golparvar-Fard et al. (2009, 2011) created point132

clouds from unordered sets of images. They aligned these point clouds with BIMs and com-133

pared geometries of as-built and as-planned models to reason about progress deviation. To deal134

with limited visibility and occlusions that were the challenges observed in these papers, Han and135

Golparvar-Fard (2015) proposed an appearance-based method that reasons about progress by rec-136

ognizing textures of materials on construction images that were aligned with BIMs. The images137

were aligned with BIMs automatically after the image-based point clouds were aligned with BIMs.138

Laser Scanned Point Clouds139

Turkan et al. (2012, 2013) used surface-based recognition to detect building elements from140

scanned point clouds for automated progress detection and then improved the accuracy of progress141

tracking using the earned value analysis. Bosché et al. (2013) proposed a Scan-vs-BIM object142

recognition framework for tracking the built status of Mechanical, Electrical, and Plumbing (MEP)143

works. Similarly, Kim et al. (2013) compared 4D BIM with detected building elements from144

laser scanned point clouds to measure construction progress. These laser scanned methods are145

based on geometry recognition and generally provide more accurate and denser point clouds of the146

structures of interest than the image-based methods. However, the image-based methods provide147

multiple viewpoints and, therefore, wider viewpoints and occlusions.148

Point of Departure: Visual Analytics & Model-based Tracking Methods149

Over the past decade, several opportunities have emerged that can support work tracking:150

1. The benefits of BIM (Young et al. 2009; Eastman et al. 2011) and its synergy with lean con-151

struction principles is well established (Sacks et al. 2010a; Sacks et al. 2013). BIM – augmented152

with production performance metrics– can serve as a great basis for representing as-planned per-153

formance and actual work deviations.154
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2. The number of images taken at construction sites to document work-in-progress has expo-155

nentially grown (Han and Golparvar-Fard 2015). It is now common to have at least a few hundred156

images taken on a jobsite on a daily basis. These images are either collected on the ground by con-157

struction personnel via consumer-grade cameras or by companies that offer professional photogra-158

phy services to construction projects; or, most recently, from above via camera-equipped UAV. The159

rapid advancement in camera, sensing, aeronautics and battery technologies have all contributed160

to UAVs becoming affordable, reliable, and easy to operate on construction sites. These camera-161

equipped UAVs can document work-in-progress by taking hundreds to thousands of overlapping162

images from various viewpoints in a short amount time (Ham et al. 2016; Han and Golparvar-Fard163

2017).164

3. The advancement in cloud computing and pervasiveness of smart devices on jobsites pro-165

vides a great platform to connect onsite personnel to virtual models. A recent report (Constructech166

2014) shows that 80% of U.S. contractors used commodity smartphones and tablets on their con-167

struction sites in 2014. Such platforms can be used for facilitating push and pull of information168

from an integrated information model.169

4. The latest empirical observations from more than 100 projects (Alarcón et al. 2008) reveal170

the probability to reach high Percentage-Plan-Complete (PPC) values in lean projects can be du-171

plicated by using information and communication tools (39% probability to reach PPC of 80%172

compared to 21% for projects without information and communication tools).173

Leveraging these emerging sources of information and communication tools creates a unique174

opportunity for developing new methods to facilitate the implementation of lean construction prin-175

ciples and lighten the extra “burdens” imposed on project participants on collecting, analyzing,176

and communicating project status.177

In an attempt to leverage these emerging opportunities to address gaps-in-knowledge, Golparvar-178

Fard et al. (2009, 2011) and Han and Golparvar-Fard (2015) propose computer vision-based179

progress monitoring methods that leverage visual data and BIM. Golparvar-Fard et al. (2009,180

2011) compare the physical presence of as-built models (point clouds) to as-planned models (BIM).181
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These studies reveal challenges with occlusions and limited visibility. To deal with these chal-182

lenges, Han and Golparvar-Fard (2015) propose a method that reasons about construction progress183

based on detected appearances (material textures in images) of BIM elements. The proposed184

geometry- and appearance-based reasoning method combines the advantages of Golparvar-Fard185

et al. (2009, 2011) and Han and Golparvar-Fard (2015).186

The appearance-based method of Han and Golparvar-Fard (2015) is designed for image-based187

as-built models. The method outputs images aligned with BIM and uses BIM to segment and188

extract image patches to be classified. Therefore, it is not suitable for laser scanned point clouds.189

Back-projection of 3D points to image planes and an algorithm that fills holes between points190

could be a possible solution for using laser scanned point clouds. However, these back-projected191

images may lose texture and may have different color ranges from the typical red, green and blue192

(RGB) images. These challenges need to be investigated before implementing the appearance-193

based method for point clouds without associated images, which is the focus of this paper.194

One of the two proposed appearance-based reasoning methods in this paper attempts to address195

this issue with point clouds without images (e.g., laser scanned). This method is based on a simple196

statistical model with less computational complexity compared to that of the image-based method.197

This method is designed for immediate practical use and, therefore, designed for fast computation198

time. The other image-based method is built on Golparvar et al. (2009) and Han and Golparvar-199

Fard (2015) in an effort to bring advantages of geometry-based and appearance-based detection200

together for improved performance. The following section details these two approaches.201

METHOD202

Figure 2 presents a process model of the proposed method. Highlighted boxes in colors other203

than gray indicate new contributions that were built on the authors’ previous methods (Golparvar-204

Fard et al. 2009; Han and Golparvar-Fard 2015). The output of the process model visualized along205

with an IPM will support WWP and Coordination during construction (see Figure 1).206

Generating 3D as-built models is the initial process. As shown in Figure 2, inputs to the pro-207

posed method are images taken by commodity cameras and/or 3D point clouds captured by laser208
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scanners. The image-based 3D reconstruction process consists of structure-from-motion (SfM) for209

sparse reconstruction (Wu 2016) and multi-view stereo (MVS) for dense reconstruction (Goesele210

et al. 2007). Images are inputs to this pipeline of SfM-to-MVS and camera poses (intrinsic and211

extrinsic camera parameters) and point clouds are outputs. On the other hand, 3D laser scanners212

typically used in construction sites (e.g., time-of-flight terrestrial laser scanners) are used to gen-213

erate 3D point clouds with commercial available software. Corresponding features (e.g., corners)214

between point clouds and BIMs are manually picked and similarity transformations are applied215

(by solving least squares problems of absolute orientation (Horn 1987)), to register the as-built and216

as-planned models and create IPMs.217

Geometry-based Filtering218

After the preparation of an IPM, the next step is geometry-based filtering. This is a simple219

occupancy check that examines whether or not there are points occupied by BIM elements. Due to220

registration errors, a threshold θreg with varying values was tested. Minimum and maximum coor-221

dinates of the entire BIM (minBIM and maxBIM) were used as an initial filtering. This process helps222

to remove points that are not part of the structure of interest. This process also reduces the size223

of image-based point clouds substantially and reduces computation times for the subsequent steps.224

According to the authors’ experience, images taken by UAVs tend to capture background objects225

that are not the structure of interest and therefore their point clouds consist of many non-relevant226

points. Thus, image-based point clouds that are typically captured from within the construction227

site boundary benefit more from this step compared to laser scanned point clouds that are captured228

from within the building footprint.229

Then, the element-level filtering by minimum and maximum coordinates of BIM elements230

(minBIMi and maxBIMi) is performed. During this process, space distribution of a point cloud within231

each BIM element boundary is computed for filtering out false positives (i.e., there are some points232

within the boundary but they are not part of any BIM elements). To maximize efficiency and mini-233

mize computation time, vectorized computation and minimal computational complexity are critical234

factors. Therefore, a simple normal distribution with a standard deviation (σ pci) is implemented235
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(see line 8 in Figure 3). This approach, as shown in Figure 3, checks the minimum number of236

points within each BIM element (θnPc) and also checks densities to avoid false negatives.237

Geometry-based filtering detects BIM elements. The next step, appearance-based reasoning,238

classifies material classes of the detected BIM elements (third column in Figure 2). Two different239

approaches are described in the following subsections: color-based reasoning for point clouds240

without images (e.g., laser scanned) and texture-based reasoning for image-based point clouds241

with images that are aligned with BIMs.242

Color-based Reasoning243

For point clouds without images, color ranges of BIM elements are compared against pre-244

collected material patches. The color ranges are created based on a normal distribution. The245

averages and standard deviations of the pre-collected material patches( avgMat j and σMat j) are used246

as training data. The reasoning process is based on the average color value of the points within247

each BIM element (avgBIMi) falling into the range of the chosen threshold θmat (see Figure 4). This248

statistical model is based on training data (pre-collected material patches) and features (colors in249

this case). The overall process is presented by Figure 4.250

The filter processes are carefully structured by logical variables and operations to maximize251

efficiency. As previously stated, one of the goals was to study and propose a possible practical252

solution that can be implemented immediately. Therefore, maximizing efficiency and minimiz-253

ing computation time were very important factors unlike a more sophisticated machine learning254

algorithm that is designed for image-based material recognition presented in the following section.255

Texture-based Reasoning256

For point clouds with images, a learning approach is used for material recognition. The initial257

step is patch extraction using camera parameters and BIM as was done by Han and Golparvar-258

Fard (2015)’s approach (see Figure 5). For each image c that is used to create 3D point clouds,259

N image patches per BIM element FACE i
c are extracted. In this paper, wBIM is used to assign260

more weight to the expected material type, taking advantage of using BIM as a priori knowledge261

(line 11 in Figure 5). The next step of material classification follows a similar approach to that of262
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Cimpoi et al. (2015) and DeGol et al. (2016) for material classification of the patches. In partic-263

ular, a combination of Fisher Vectors (Perronnin et al. 2010) and Convolutional Neural Network264

(CNN) (Krizhevsky et al. 2012) features are input to a Support Vector Machine (SVM) for learning.265

Fisher Vectors are created by first extracting dense SIFT (Lowe 1999) features from each patch.266

In training, the dense scale-invariant feature transform (SIFT) features are reduced to a dimension-267

ality of 80 by Principal Components Analysis (PCA) before being clustered into 256 modes with268

a Gaussian Mixture Model (GMM). The Fisher Vectors are then mean and covariance deviations269

from the GMM modes (`2 normalized and sign square-rooted). Convolutional Neural Network270

features are created using the pre-trained VGG-M network of Krizhevsky et al. (2012). The fea-271

tures are extracted from the last convolutional layer of the network rather than the fully connected272

layers.273

Classification is then performed using a one vs. all SVM scheme. This scheme has been shown274

to achieve exemplary results for 2D texture recognition (Hayman et al. 2004; Cimpoi et al. 2014;275

Cimpoi et al. 2015; Degol et al. 2016). A χ2 kernel is used with the SVM. The Fisher Vector and276

CNN features are normalized individually before being concatenated for learning.277

EXPERIMENT SETUP278

Two different types of as-built data were prepared to test texture- and color-based reasonings:279

image-based and laser scanned point clouds, respectively, from two construction projects. Image-280

based 3D reconstruction was used to create an as-built point cloud of a hotel project (denoted as281

HP). A laser scanner was used for the same purpose on a biomedical building project (denoted BP).282

Hypothetical WWP schedules and their corresponding BIMs were generated, and the goal was to283

simulate progress monitoring for the given weeks. Table 1 summarizes this data preparation for284

the image-based and laser scanned approaches.285

Global Filtering286

As can be seen in Table 1, there are millions of points associated with each point cloud. Pro-287

cessing these points can be time-consuming. Typically, each point consists of six numbers (X,288

Y, and Z coordinates and RGB values), excluding normal values (three numbers in X, Y, and Z289
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directions) that the proposed method does not use. The first step (lines 1-3) in Figure 3 removes all290

background points that can be significant. Figure 6 and Table 2 show how an image-based point291

cloud can have a large percentage of unwanted points (background).292

The main cause, in the case of HP, was the use of a UAV for data capture. Due to safety293

concerns related to cranes, a UAV operator had to fly the UAV at high altitudes. Thus, many images294

had background buildings and roads that surround HP. The initial filtering process removed these295

objects. On the other hand, the laser scanned point cloud had a much smaller percentage reduction296

because the laser scanner was stationed within the building footprint. It had limited viewpoints297

compared to that of the UAV.298

Element-level Filtering299

The next step is filtering by each BIM element (lines 4-19 in Figure 3). The texture- and color-300

based reasoning happen within this step. This step performs the same filtering based on logical301

operations but this time at element-level. In other words, points per element are extracted. As302

mentioned in Section 4, varying values of threshold θreg were tested. Figure 7 shows two exam-303

ples of points per element - a large concrete slab and column. The elements that are detected by304

these two filterings (one on the entire model and the other on each element) are input to the rea-305

soning methods. This reduces computation times on “non-existing” elements during the reasoning306

process.307

Figure 8 shows the effect of θreg on the second filtering process. Due to registration errors and308

the real structure (e.g., formwork in Figure 8b) having larger volume/area than the BIM elements,309

filtering purely based on the size of the BIM elements may filter out elements of interest (e.g.,310

partly missing formwork in Figure 8a). Therefore, θreg needs to account for these cases and should311

be greater than 0. As seen in Figure 8a & b (HP) and 8c & d (BP), varying θreg has a significant312

impact on some of the elements - i.e., formwork of the core walls for HP and steel girders on the313

second floor of BP.314
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Training Data for Color- and Texture-based Reasoning315

For color-based reasoning, patches of surfaces of different materials were extracted. Some of316

the extracted patches are presented in Figure 9. These patches are used as a training set that sets a317

statistical boundary for classifying material types.318

For texture-based reasoning, the Construction Material Library (CML) initially collected by319

Dimitrov, Han, and Golparvar-Fard (2014, 2015) was used as the training dataset. CML consists320

of more than 3,000 images that are categorized into 20 construction material classes.321

RESULTS322

This section provides detailed analyses of all thresholds/factors discussed in the Method sec-323

tion.324

Geometry- and Color-based Reasoning: BP325

The first study was conducted by varying values of θreg (see Figure 6 and 7 for the effect of326

varying θreg). As summarized by Figure 10, increasing θreg did not enhance the accuracy. Instead,327

it increased the number of false positives. This is due to the accurate registration between the laser328

scanned point cloud and BIM. By increasing θreg, the chance of including points from unwanted329

objects increases (see Figure 11). θnPc of [1000:1,000,000] were tested and yielded the same330

results except when θnPc equals 1000. Since a large θnPc can cause false positives, a value that is331

lower than 1,000,000 but larger than 1000 (θnPc = 10,000) was selected for the following studies.332

Similarly, varying values of θspace affects detection of BIM elements. The accuracies shown333

in Figure 12 refer to the accuracies of BIM element detection. As can be seen from Figure 12,334

increasing θspace (wider distribution) increases the accuracies until a certain point (θspace =32 in335

this case). θspace =8 and θspace =16 yielded the highest accuracy of 91.9 %.336

This is expected performance for the wider distribution of points because a small cluster of337

points will not be counted as an inlier (see Figure 11 for a case where a small cluster of points338

create a densely populated point in a part of a BIM element but not distributed throughout this339

BIM element). Not detecting these elements is a key indicator that this method is robust. Therefore,340
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counting numbers of true negatives (counting these elements as existing elements) is important and341

captured.342

These results show that this geometry-based reasoning is very effective in detecting over 90%343

of BIM elements and can be used for progress monitoring as it is robust to true negatives (not344

detecting elements when it should not). Lastly, varying values of θmat effects the performance of345

material classification. Figure 13 shows the accuracies of material classification at operation-level.346

As can be seen in Figure 13, the highest accuracy is 67.57%. The main challenges are changes in347

lighting conditions and colors saved from the laser scanners. For instance, 61 scans were captured348

with some taken in the morning and some taken in the evening. As can be seen in Figure 9, the349

first four from the left are all concrete surfaces and data captured in the evening shows higher blue350

color values (B of RGB).351

Geometry- and Texture-based Reasoning: HP352

The main goal of this section is to validate the applicability of integrating geometry-based353

reasoning with the texture-based reasoning. Figure 14 presents the impact of varying values of354

θreg on detection of BIM elements. All cases except when θreg equals to zero successfully detected355

all BIM elements. However, there were more false positives as θreg is increased because of non-356

relevant points being captured by larger boundaries of BIM elements.357

HP has a larger misalignment compared to that of BP (see Figure 15). For this reason, increas-358

ing θreg improves the accuracy of BIM element detection at the expense of increasing the number359

of false positives, similar to BP (see Figure 14). Moreover, the types of formwork used at this360

site are not included in the current CML. Therefore, there was one element that was not classified361

correctly due to having the number of patches capturing blue meshes outnumbering the number of362

patches capturing wooden formwork (see Figure 16). As can be seen in Figure 16, the formwork363

has a large area of blue meshes that are not part of CML. HP is a vertical construction project with364

many occlusions resulting in many patches that do not capture textures of interest (i.e., construc-365

tion materials). For this reason, the effect of varying wBIM was significant. As seen in Figure 17,366

the accuracy increased from 65% to 91% when wBIM was increased from 1 to 2.5 (e.g., the number367
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of concrete patches for a concrete element is multiplied by wBIM).368

Computation Time369

One of the main contributions of this paper is the efficient processing of point clouds (for370

geometry-based filtering and color-based reasoning). A computer with a 3.60 GHz CPU and 64371

GB of RAM is used. Table 3 summarizes computation times for the proposed method. For process-372

ing more than a hundred million points, the proposed method takes around 30 seconds including373

both filtering and reasoning steps. This result and the accuracy of BIM element detection shows374

effective performance and possible use in practice (e.g., quick identification of existence). The pro-375

cessing time for the image-based approach (i.e., 3D reconstruction and texture-based reasoning)376

is not investigated - 3D reconstruction, training CML, and classification took hours to run with a377

powerful Graphics Processing Unit (GPU)-enabled server.378

Discussion on the Collected Data379

One of the objectives of this paper is to show that the proposed methods can utilize visual data380

that many construction companies already have. Thus, to test texture- and color-based reasoning,381

two construction projects with aerial images and laser scans that were already collected as part of382

their project control practices were chosen. Comparison of the two methods on the same dataset383

was not part of the scope. However, if they were tested on the same dataset, they would yield384

comparable results to the presented results - the texture-based method having higher accuracies385

than those of the color-based method. This is because the features used in both methods are specific386

to material types (e.g., color and texture of concrete) rather than being specific to projects.387

In this paper, hypothetical WWPs and corresponding 4D BIMs were prepared to present as-388

planned conditions. However, in actual practice, WWPs and 4D BIMs may not be up-to date389

(e.g., a quick change order that was not reflected in a WWP and a BIM). In this case, the as-390

built condition (e.g., dimension and location of a wall) may be significantly different from the as-391

planned condition. The proposed geometry-based filtering process would not be able to capture the392

progress correctly in this case. However, it can still "signal" the project management team and draw393

their attention to where the discrepancy is happening. They can either update the BIM or overwrite394

15 Han, August 7, 2017



the progress. When a discrepancy is small (e.g., non-design problems: discrepancy+ registration395

error < θreg), the geometry filtering can still capture the as-built condition and compare that with396

the as-planned condition.397

CONCLUSIONS AND FUTURE WORK398

The proposed progress monitoring method has the following contributions: 1) combining399

geometry- and appearance-based reasoning methods and 2) providing an efficient and fast solution400

that can be used in practice. The geometry-based reasoning detects the existence of BIM elements401

without differentiating operation-level activities (e.g., formwork vs concrete). The appearance-402

based reasoning recognizes different material types and, therefore, can detect operation-level progress.403

Over 90% of the BIM elements in the two case studies were detected by the geometry-based detec-404

tion. About 68% and 90% accuracies were achieved by color-based and texture-based reasoning,405

respectively.406

The proposed method can be used with non-image-based datasets, such as laser scanned point407

clouds. However, enhancing training datasets (2D and 3D patches for image-based and point408

cloud based reasoning) and reducing computation time for texture-based reasoning need further409

investigation. The current datasets do not have enough samples for various construction materials.410

Another remaining challenge is preparing proper model breakdown structures (MBS) and 4D411

BIMs. The companies that share HP and BP did not have proper MBSs and 4D BIMs. Given 3D412

BIMs and construction schedules, the authors created 4D BIMs of HP and BP. The authors also413

carefully inspected and removed any discrepancies found in the BIMs. This is one of the practical414

huddles that needs to be addressed to automate the proposed progress monitoring method that uses415

4D BIMs.416
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Table 1. Summary of data preparation

Project # of Images # of Scans Numb. of 3D points # of BIM Elements
HP 532 N/A 6,390,085 69
BP N/A 61 148,622,647 40
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Table 2. Point reduction from the initial geometry-based filtering

HP BP
# of points before initial filtering 6,390,085 148,622,647
# of points after initial filtering 1,348,148 125,539,249

% reduction 79.9 15.5
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Table 3. Computation time. * includes color-based reasoing

HP BP
# of points processed 6,390,085 148,622,647
Initial Filtering (sec) 0.22 4.75

Element-level Filtering (sec) 1.64 25.97 *
Total (sec) 1.86 30.72
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