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(1) Compute and match features: SIFT matching

Image 1 Image N

Matching Criteria 
Finliers > 𝝉 

(2) Fit fundamental matrix and match images

(3) Initialize reconstruction: Solve for pose between two images

(4) Initialize reconstruction: Triangulate 3D points
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(5) Resectioning: Add additional images and points

(6) Bundle adjustment
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1. Select image that views the most
    triangulated points

2. Estimate pose of image using all the 
    triangulated points (PnP algorithm)

3. Triangulate more points using the added image

Our method focuses on improving the resectioning process

Number of AAM matches 
between images i and j Common tracks 

between images i 
and j

Track length of 
kth track

Hyperparameter: 0.5

Our method improves standard pipelines Our method outperforms other disambiguation methods Local pose estimation has the largest positive impact

(1) We observe that shorter tracks are more likely in good image matches for 
     scenes with duplicate structures.

(2) We give longer tracks less importance by discounting all matches based on their track 
     length. This is analogous to how tf-idf downweights common features in retrieval.

(3) Our similarity measure, ambiguity-adjusted matches (AAM), 
     outperforms robust matches in discriminating duplicate structures.

We use points from a smaller set of reliable images to determine resectioning order and pose estimation

Local resectioning order: Add the most similar image to any reconstructed image where similarity is 
measured in AAM.

Local pose estimation: Determine the similarity value between the resectioned image and it’s most similar reconstructed image (smax). smax and 
τ (pre-set parameter) determine the set of reliable reconstructed images. Points viewed by these images are used for pose estimation.
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