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Abstract

We present FEATS (Feature Extraction and Tracking
Simulator), that synthesizes feature tracks using a cam-
era trajectory and scene geometry (e.g. CAD, multi-view
stereo). We introduce 2D feature and matching noise mod-
els that can be controlled using a few parameters. We also
provide a new dataset of images and ground truth camera
pose. We process this data (and a synthetic version) with
several current SfM algorithms and show that the synthetic
tracks are representative of the real tracks. We then show
two practical uses of FEATS: (1) we generate hundreds of
trajectories with varying noise and show that COLMAP is
more robust to noise than OpenSfM and VisualSfM; and (2)
we calculate 3D point error and show that accurate camera
pose estimates do not guarantee accurate 3D maps.

1. Introduction
We present FEATS (Feature Extraction And Tracking

Simulator), a simulator that synthesizes feature matches
(rather than images) using camera poses and scene geom-
etry (e.g. CAD, laser, multi-view stereo) to (1) predict if
3D reconstruction on real images will succeed and (2) eval-
uate structure from motion (SfM) using controlled noise and
perfect ground truth. While it is difficult to synthesize im-
ages that are realistic enough for evaluation [51], synthesiz-
ing geometry is easier and has been shown to be effective
for training and evaluation [44]. Moreover, SfM algorithms
are independent of the images given extracted and matched
features (i.e., “tracks” or “match graphs”). Synthesizing
feature tracks also enables direct comparison among SfM
algorithms (as feature detection/matching is held constant),
and we can systematically vary trajectories, feature noise,
and matching outliers to better understand the strengths and
weaknesses of the algorithms. Lastly, our simulator pro-
vides exact ground truth 6DoF camera pose and 3D point
locations, which are crucial to measure the accuracy of SfM.

FEATS is motivated by two challenges. The first chal-
lenge is wanting to know if a data collection path will result
in a successful reconstruction. For 3D mapping of construc-

tion sites [26, 25, 18, 19, 1, 5, 7], repeated (e.g. weekly)
drone flights collect image data for 3D mapping the scene.
For each flight, a path is planned using software before the
drone collects the images. These images are input to an
SfM algorithm which takes hours (sometimes days) to cre-
ate a 3D map (which may be a failure). This process is
time consuming, costly, and frustrating when the recon-
struction fails. FEATS offers a solution because FEATS
can use previous maps to simulate feature extraction and
matching (which are input to SfM) to evaluate (and fix)
planned paths prior to data collection. The second chal-
lenge is obtaining aligned camera pose and 3D point ground
truth data (both, together) of large environments for evalu-
ating SfM algorithms. Currently, capturing ground truth is
challenging and costly (see Section 2), but necessary be-
cause (1) large environments are a common SfM applica-
tion [16, 10, 21, 53, 8, 45, 48]; and (2) accurate estimates
of camera pose do not guarantee accurate estimates of 3D
points (see Section 5). FEATS provides ground truth cam-
era pose and 3D point locations for arbitrarily large scenes.

We introduce a new dataset of image collections with
ground truth camera pose and use FEATS to generate syn-
thetic equivalents. We show that SfM results on these syn-
thetic equivalents are predictive of SfM results from pro-
cessing real images. We then demonstrate two new bench-
marks for SfM enabled by FEATS. In particular, we vary
noise parameters for synthetic tracks and show how SfM al-
gorithms perform, and we calculate error between ground
truth 3D points and reconstructed point clouds.

In summary, our contributions are: (1) FEATS, a sim-
ulator to synthesize feature tracks (with ground truth pose
and 3D point locations) for evaluation of SfM algorithms;
(2) a new dataset (images and ground truth) that focuses on
current pitfall scenarios for SfM (e.g. pure rotation); (3) ex-
periments verifying that FEATS produces synthetic tracks
that represent real world data; and (4) two new evaluations
of current SfM algorithms using synthetic features.

2. Related Work
Simulation and Synthetic Data: Synthetic data has be-

come popular for solving computer vision problems be-



Figure 1: FEATS (Feature Extraction And Tracking Simulator) synthesizes feature tracks from camera motion through 3D
scenes. The feature tracks are controlled through noise model parameters and input into SfM algorithms. We use new real
world data (with ground truth) to validate that simulated tracks are predictive of real world tracks. We then show how several
SfM algorithms perform for varying noise and calculate 3D point error on the resulting reconstructions.

cause of increasingly powerful computer graphics tools and
the need for large amounts of ground truth data. Kaneva et
al. [32] and Butler et al. [14] generate data for image fea-
ture and optical flow evaluation respectively. Battaglia et
al. [11] use simulation data to study human interaction with
objects. Taylor et. al. [50], Marin et al.[35], Stark et al. [47],
and Hattori et al.[30] use synthetic data for training object
classifiers. The main challenge is using synthetic data to
achieve results that transfer to real data. Works including
Gaidon et al. [23], Fisher et al. [20], Handa et al. [28, 27],
Ros et al. [39], Vazquez et al. [52, 54], and Shotton et
al. [44] address this challenge by training models using a
mix of synthetic and real data to achieve state-of-the-art re-
sults on labeling and classification.

There are also a few simulators for 3D reconstruction.
Handa et al. [29] uses two virtual 3D scenes to create RGB-
D images from RGB and depth noise models. CARLA
(Dosovitskiy et al. [17]) and AirSim (Shah et al. [43]) each
provide a small number of highly detailed virtual 3D worlds
with moving vehicles and synthetic images and depth maps.
FEATS is different because it enables unlimited scenes and
camera paths. Moreover, all previously mentioned work
synthesizes images. Vaudrey et al. [51] shows that results
on synthetic images do not easily transfer to real world re-
sults because synthetic images have crisp image boundaries
and consistent pixel intensity values. Alternatively, Shot-
ten et al. [44] shows that synthetic geometry can effectively
transfer to real world results. We follow in the footsteps of
this work and provide the first simulation environment that
synthesizes image feature tracks.

Real 3D Reconstruction Data: Collecting ground truth
camera pose and scene geometry is difficult, costly, and
few datasets exist that provide both. GPS tagged images
can have meter level accuracy and are not ideal for ground

truth camera pose. Real Time Kinematics (RTK) GPS sys-
tems are more accurate, providing centimeter level accu-
racy. Datasets such as Malaga [12], Rawseeds [6], KITTI
Driving [24] and Cornell Quad [16] all use RTK GPS for
ground truth camera pose. However, none of these datasets
provide ground truth geometry because they cover large
outdoor scenes. For small workspaces, motion capture
systems (MoCap) can produce millimeter accuracy ground
truth camera pose. The TUM RGB-D dataset [49] and Eu-
RoC dataset [13] provide tens of trajectories in small in-
door and outdoor scenes with camera pose ground truth
from MoCap. The EuRoC dataset also provides geometry
ground truth using a laser scanner. Tanks and Temples [33]
and ETH3D [42] use laser scanners to provide 3D geometry
ground truth of mid-sized scenes (e.g. rooms, courtyards,
etc.). They align the 3D points estimated by SfM to the 3D
models to estimate camera pose ground truth.

Only one dataset (EuRoc) uses both a laser scanner
for ground truth geometry with a motion capture system
for ground truth camera pose. All previously mentioned
datasets are from a ground perspective. Also, ground truth
camera pose in large indoor scenes is limited, yet accurate
camera localization and geometry estimation are important
for indoor robot navigation. FEATS mitigates these short-
comings because it provides ground truth camera pose and
3D point locations (enabling 3D point accuracy evaluation)
for any scene. We also provide new real world data and
camera pose ground truth that focuses on the fundamental
motions that are challenging for SfM (e.g. pure rotation).

3. Synthesizing Feature Tracks
FEATS is implemented using the Unity3D game en-

gine [9]. FEATS provides tools for a user to create 3D
scenes (from imported meshes and point clouds) and de-



Figure 2: Left: Meshes and point clouds set the 3D scene and cameras (white frustums) set the trajectory (magenta line).
Middle: 3D points are back projected onto the cameras as 2D image features (red dots). Right: 2D image features are
matched across images using our feature matching model.

fine camera trajectories within those scenes (Section 3.1).
With the 3D scene and a trajectory created, 2D feature and
matching noise models are used to synthesize feature tracks
with real world characteristics (Section 3.2).

3.1. Setting up a 3D Scene

FEATS imports both point clouds and meshes to provide
a set of 3D points that can be backprojected as 2D keypoints
as the camera moves through the scene. Point clouds gener-
ated using SLAM/SfM algorithms are ideal since (1) the 3D
points are generated by tracking 2D point locations across
images, and (2) the sparsely tracked points encode the fea-
ture density of the scene (i.e. as opposed to meshes that
are dense surfaces). Meshes provide features for tracking
if a point cloud is not provided, but are better suited for
occlusion detection (i.e. we do not back project 3D points
through walls). Ideally, both a point cloud and aligned mesh
are imported together (easy to do using SfM and multi-view
stereo [22]), providing both 3D points to track and surfaces
for occlusion. Note that incorrect points are okay because
they become perfectly accurate ground truth points for fu-
ture reconstructions.

Trajectories are imported or edited/created by placing
cameras. As each camera is placed, an interpolated path
is created connecting the cameras sequentially. Cameras
can be selected for position and rotation tweaks and a pre-
view window shows the camera’s current view. Figure 2
provides a depiction of setting up the 3D world and camera
placement.

3.2. Synthesizing Feature Tracks and Ground Truth

FEATS provides options to dictate the density of frames
to capture for a camera trajectory. For each frame, feature
tracks are synthesized by first finding the 3D points within
the viewing area of that camera and backprojecting them to
the image plane of the frame according to our 2D feature
noise model. Those points are then matched to points in all
subsequent frames based on our matching model (Figure 2).

Figure 3: Farthest left: 2D noise being added to backpro-
jected 3D points. Middle left: S1,S2 for scale match proba-
bility. Middle right: v1,v2 for viewing direction match prob-
ability. Farthest right: R1,R2 for rotation direction match
probability.

2D Feature Noise: 3D points are back projected to
the image plane of a frame using the projective camera
model:

xij = Kj [Rj tj ]X̂
i (1)

where Kj is the intrinsic camera matrix for image j, [Rj tj ]

is the extrinsic camera matrix for image j, X̂i is position
of point i in 3D, and xij is the 2D position of 3D point X̂i

projected onto image j. In the simulator, all [Rj tj ] and X̂i

are known. In our experiments, we use the approach from
VisualSfM [53] to estimate the focal length of the camera
(f ) of K as f = 1.2 ∗ max(W,H) and we assume the
principal point (cx, cy) of K is cx = W/2 and cy = H/2.
W is frame width and H is frame height.

Noise is then added to each 2D point on the frame (Fig-
ure 3):

x∗ = x+N (µ, σ2) (2)

where x∗ is final 2D position of the synthetic feature
point, and N (µ, σ2) is the normal distribution with mean
µ and standard deviation σ. We use µ = 0 and σ2 = 1
for all results in this paper (except σ2 varies for Section 5.1).

Matching Model: A probability model is used to
dictate whether a feature point matches across two frames.
The probability is calculated based on the difference in
scale, viewing direction, and rotation (Figure 3). These
equations are inspired by the feature matching experiments
of Mikolajczyk et al. [37, 36]. The scale match probability
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Figure 4: The 16 datasets are depicted. The trajectory of the dataset is depicted as a magenta line. The ORB-SLAM2 map of
the motion capture arena is shown as the white point cloud. Example images from the datasets are also shown.

(Pscale) is defined as:

Pscale = PS
max ∗ exp

(
−
∣∣∣∣S∆

αS

∣∣∣∣)
S∆ =

max (S1, S2)

min (S1, S2)
− 1

(3)

where PS
max is the max probability, αS is a tuning parame-

ter, and S1 and S2 are the distance from the 3D point to each
frame’s camera center. This model decreases the chances of
a match as the difference in scale increases.

The viewing direction match probability (Pview) is de-
fined as:

Pview = PV
max ∗ exp

(
−
∣∣∣∣V∆

αV

∣∣∣∣)
V∆ = arccos (v1 · v2)

(4)

where PV
max is the max probability, αV is a tuning param-

eter, and v1 and v2 are unit vectors from camera centers
of each frame to the 3D point. This model decreases the
chances of a match as the difference in viewing direction
increases.

The rotation direction match probability (Prot) is defined
as:

Prot = PR
max −

αR

π
∗R∆

R∆ = π − ||R1 −R2| − π|
(5)

where PR
max is the max probability, αR is a tuning param-

eter, and R1 and R2 are the camera roll rotations (i.e. ro-
tation about the look-at vector). This model decreases the

chances of a match as the difference in orientation increases.
The decay is slower because we found in practice that scale
and viewing direction differences effect matching probabil-
ity more than orientation.

The final probability of a match is:

Pfinal = Pscale ∗ Pview ∗ Prot . (6)

Pfinal is calculated for each feature in each pair of frames
and compared against a randomly generated number to de-
cide if it is a match or not. Once all matches for a pair
of frames are found, Ndrop% of the matches are dropped.
Lastly, Nbad% of incorrect matches are also added.

We use PS
max = 0.9, αS = 2, PV

max = 0.9, αV = 6,
PR
max = 1.0, αR = 0.1, Ndrop = 2%, and Nbad = 1% for

all results in this paper (except Nbad varies for Section 5.1).
These values were chosen based on the experimentation in
Section 4.2 and the results in [37, 36].

The final output is (1) a feature file for each frame with
noisy u,v locations and true X ,Y ,Z 3D positions of each
feature point; and (2) a match file for each frame listing all
matches to other frames.

4. Comparing to Real Data
In this section, we present a new dataset (Section 4.1)

and use it to show that our matching model is a realistic
representation of image matching (Section 4.2); and when
SfM packages process our synthesized feature tracks, the
pose and geometry outputs are representative of the results
that these SfM packages produce on real data (Section 4.3).
Comparisons in this paper use three modern SfM pipelines:
COLMAP [41], OpenSfM [3], and VisualSfM [53].
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Figure 5: Match percentages (top: real, bottom: synthetic)
are shown for the matching steps of COLMAP, VisualSfM,
and OpenSfM. All plots are in the same scale (black = 0%,
white = 70%). The Pearson correlation r-value between
match percentages for “Straight 2” is 0.98 (0.98), “Rota-
tion Fast” is 0.94 (0.92), and “Long 5” is 0.88 (0.84). The
r-value in parenthesis is ignoring cells where both match
probabilities are below 1%. For all correlation calculations,
the diagonal is not used. These r-values indicate strong pos-
itive correlation.

4.1. Trajectories with Pose Ground Truth

In total, 17 datasets (image collections with ground truth
6DoF pose) are collected in a motion capture arena (Op-
tiTrack system [4]). The first dataset is strictly used to
generate a point cloud of the motion capture arena using
ORB-SLAM2 [38]. ORB-SLAM2 is appropriate because it
works well for indoor mapping and uses different features
(ORB [40]) than those of SfM pipelines (SIFT [34]). We
use coherent point drift [46] to align the ORB-SLAM2 tra-
jectory to the ground truth trajectory and apply that trans-
formation to bring the map into the coordinate frame of the
motion capture arena.

The other 16 trajectories are for comparison. Each of
these trajectories is meant to focus on specific types of mo-
tion (some of which are often difficult for SfM). For ex-
ample, the Arc datasets add progressively more rotation,
the straight datasets have sideways and looming transla-
tion, and the long datasets close loops. Figure 4 shows
each of the 16 trajectories (magenta lines) in the ORB-
SLAM2 generated map (white points). The images (col-
ored 752x480 resolution) for these datasets are from a Ma-
trix Vision mvBluefox-200wc camera [2]. Figure 4 shows
example images from the datasets. See the supplementary
material for additional information.

COLMAP OpenSfM VisualSfM

Arc 1 0.84 (0.82) 0.91 (0.89) 0.78 (0.78)
Arc 2 0.87 (0.85) 0.92 (0.90) 0.80 (0.80)
Arc 3 0.86 (0.83) 0.96 (0.95) 0.93 (0.90)
Egg 0.88 (0.82) 0.91 (0.88) 0.84 (0.81)
Long 1 0.87 (0.82) 0.91 (0.89) 0.84 (0.78)
Long 2 0.90 (0.88) 0.91 (0.90) 0.86 (0.84)
Long 3 0.90 (0.87) 0.93 (0.91) 0.84 (0.84)
Long 4 0.90 (0.88) 0.93 (0.92) 0.88 (0.86)
Long 5 0.89 (0.86) 0.91 (0.89) 0.88 (0.84)
Pure rotation fast 0.94 (0.92) 0.94 (0.92) 0.93 (0.91)
Pure rotation slow 0.89 (0.87) 0.91 (0.88) 0.89 (0.87)
Snake 1 0.91 (0.91) 0.96 (0.96) 0.83 (0.83)
Snake 2 0.83 (0.83) 0.92 (0.92) 0.74 (0.74)
Straight 1 0.85 (0.85) 0.95 (0.95) 0.74 (0.74)
Straight 2 0.94 (0.94) 0.98 (0.98) 0.82 (0.82)
Trajectory X 0.90 (0.90) 0.95 (0.95) 0.88 (0.88)

Table 1: Pearson correlation r-values for the match per-
centages of real and synthetic data for the matching step of
COLMAP, OpenSfM, and VisualSfM. The value in paren-
thesis is the r-value ignoring cells of the matrix where both
probabilities are below 1% (i.e. close to 0%). All values are
above 0.74, indicating a strong positive correlation.

4.2. Verifying the Match Model

FEATS matching is highly predictive of matching on
real images: Figure 5 shows comparisons (top: real, bot-
tom: simulated) of the percentage of matches between im-
age pairs for the matching step of COLMAP, OpenSfM,
and VisualSfM. In each plot, the x and y axis are sequen-
tial frames. For example, reading across row 1 shows the
percentage of matches for image 1 compared to each other
image. Continuing with this example, the match percent-
age for row 1, column 10 (i.e. image 1 matching to image
10) is the number of feature matches between image 1 and
10 divided by the number of features in image one. On the
other hand, the match percentage for row 10, column 1 is
the number of feature matches between image 10 and 1 di-
vided by the number of features in image 10. The scale of
all plots is the same (black = 0% and white = 70%).

The match percentages accurately reflect effects due to
trajectory. For example, the “Straight 2” trajectory has very
little rotation and mostly looming motion. Thus, we see
decreasing match percentages because the scale difference
increases (i.e. the chances of matches decreases as the scale
difference increases). Similarly, “Rotation Fast” has shift-
ing translation followed by significant out-of-plane rotation,
causing the viewing angle difference to increase drastically
and reduce the matching percentage around frame 30. For
longer datasets with significant translation and rotation (i.e.
“Long 5”), we see qualitatively that the synthetic match per-
centages represent the real match percentages well. See
supplementary material for all match percentage plots.

Table 1 provides the Pearson correlation r-values be-
tween each real and simulated match percentage matrix.
The diagonal is ignored because each diagonal cell is an
image matching with itself. The values in parenthesis are



Figure 6: We show that synthetic tracks are predictive of results from real data using the following experiment. There are
two flows from left to right: real images (green boxes and arrows) and simulated tracks (blue boxes and arrows). Real images
are input into SfM and pose and geometry are output. The ground truth (GT) pose for the real images and motion capture
arena point cloud are input to FEATS. The GT Pose is used by the simulator to generate a camera trajectory through the point
cloud. Simulated tracks are output and run with SfM to generate pose and geometry estimates. The output pose from the
synthetic and real data are compared to show that the simulated tracks represent real data.

the Pearson correlation r-values with the “zero” probabili-
ties excluded. Specifically, if, for a given cell of the matrix,
both the real and simulated match percentages are below
1%, then that value is excluded. For all trajectories for all
three SfM methods, the r-values are 0.74 or greater. This
indicates a strong positive correlation between the real and
synthetic match percentages (values above 0.5 are typically
considered a strong correlation [15]), providing evidence
that the FEATS matching model represents matching of real
images by COLMAP, OpenSfM, and VisualSfM.

We also calculate the average L2 distance between each
real and simulated match percentage matrix. The total av-
erage L2 distance is less than 0.10% for all algorithms and
all trajectories. These numbers show that there is no signif-
icant scaling or translation between the match percentages,
and provide additional evidence that the match model ac-
curately represents real matching for COLMAP, OpenSfM,
and VisualSfM. See supplementary material for all values.

4.3. Verifying the Synthetic Tracks

Figure 6 outlines our experimental setup. There are two
flows from left to right: one for real data (shown with green
boxes and lines) and one for synthetic data (shown with blue
boxes and lines). For clarification, ground truth pose (GT
Pose) is real data, but is a blue box because it is used to set
the trajectories in the simulator 3D scene (Section 3.1).

For the real data, images are input into the SfM pipeline
and the output is pose and geometry. For the synthetic data,
the ORB-SLAM2 point cloud of the motion capture arena
and GT Pose are input into the simulator for each dataset.
The simulator uses the GT Pose to define the camera tra-
jectory. FEATS uses the feature noise and match model to
generate synthetic feature tracks that are input to SfM. The
output is pose and geometry. We align the real and synthetic
pose estimates to the GT pose using Horn’s method [31].

This process is repeated for all 16 trajectories and us-

COLMAP OpenSfM VisualSfM

Arc 1 / / /
Arc 2 / / F /
Arc 3 / / F / F
Egg F / F / F / F
Long 1 / F / F F / F
Long 2 / / /
Long 3 / / /
Long 4 / / /
Long 5 / / /
Rotation Fast / F / F /
Rotation Slow / F / F /
Snake 1 / / /
Snake 2 / / F /
Straight 1 / / F / F
Straight 2 / / /
Trajectory X / / /

Table 2: Blank entries indicate that the reconstruction is
correct. The notation is (real/synthetic). “F” indicates fail-
ure. There are 8 failures on real data and the synthetic data
predicts 8 of them (recall of 100%). The synthetic data in-
correctly predicts 2 failures that do not occur (precision of
80%). The overall accuracy is 96% (46/48). This is evi-
dence that the synthetic data represents the real data well
and helps predict failure reconstructions.

ing three state of the art SfM pipelines: COLMAP [41],
OpenSfM [3], and VisualSfM [53]. We manually inspect
each set of trajectories and tabulate in Table 2 whether the
reconstructions are successful or not (“F” denotes failure).
Examples of the aligned trajectories are shown in Figure 7.

FEATS successfully predicts success and failure:
From Table 2, we see that the three SfM algorithms fail
8 times in total on the real data and all of those failures
are predicted by the synthetic data (recall of 100%). The
simulated data predicts failure 10 times in total (precision
is 80%). For classifying success, recall is 100% and preci-
sion is 95%. Overall, the accuracy is 96% (46/48). These
results are evidence that the synthetic data is an effective
representation of the real data. Moreover, these results pro-



Figure 7: Trajectories for synthetic (red dotted) and real (blue dashed) data are aligned to ground truth (cyan solid). The left
section shows successful reconstructions that the synthetic data also predicts as successful (column 1 for COLMAP, column
2 for OpenSfM, column 3 for VisualSfM). The middle section is failure reconstructions that the synthetic data also predicts
as failures. The right section is successful reconstructions that are predicted as failures.

Figure 8: The left three plots show the percent of localized images as 2D gaussian noise σ2 and bad match percent vary
(yellow = 100%, dark blue = 0%). The right plot shows that absolute trajectory error [49] generally increases as noise
increases for COLMAP.

vide evidence that FEATS can reliably predict failure recon-
structions, which can be used to test and adjust planned data
captures before time and effort is spent collecting the data.

5. SfM Evaluations Enabled by FEATS

In this section, we demonstrate two new methods to eval-
uate SfM that are enabled by FEATS: (1) comparing SfM as
2D feature noise varies and (2) calculating 3D point error.

5.1. Robustness to Feature Noise and Bad Matches

Using FEATS, we generate 99 trajectories of Arc1 while
varying the percent of bad matches and σ2 in Equation 2.
We vary the percent of bad matches between 0% and 10%
by increments of 1%. We vary σ2 between 0 and 4 by
increments of 0.5. We process these 99 trajectories with
COLMAP, OpenSfM, and VisualSfM. The percent of local-
ized images for each algorithm is shown in Figure 8.

COLMAP is robust to both types of noise, registering all
images. OpenSfM is sensitive to bad matches. On the other
hand, VisualSfM is less sensitive to bad matches, but more

sensitive to 2D feature noise. Comparing COLMAP to
OpenSfM provides evidence that COLMAP’s scene graph
augmentation and new triangulation approach [41] (im-
plementations that differ for OpenSfM) are effective in
overcoming 2D noise and bad matches. For VisualSfM,
the noise causes inconsistent results, which OpenSfM
and COLMAP may not exhibit because COLMAP and
OpenSfM have additional outlier filtering and retriangula-
tion methods used during bundle adjustment. In all cases,
failed reconstructions are marked as 0% and incorrectly reg-
istered images are not counted.

Since COLMAP registers all images for all trajectories,
we calculate the absolute trajectory error (ATE) [49] in the
right plot of Figure 8. It is interesting to see how the ATE
increases significantly as the 2D noise approaches σ2 = 4.

5.2. Calculating 3D Point Error

It is challenging to evaluate the accuracy of a 3D re-
constructed point cloud quantitatively. Instead, qualitative
measures are used (i.e. does the point cloud look “good”
and “clean”). Even when ground truth geometry is provided



Figure 9: The ground truth point cloud (i.e. map points used by FEATS) is shown in green. The reconstructed point cloud (i.e.
synthetic feature tracks processed by SfM) is shown in red. In the bottom two figures, the trajectories are plotted, showing
that pose error is low; however, the 3D point errors are different for each SfM (more red indicates more error).

by a CAD model or laser scanner, it is difficult to find the
corresponding point on the ground truth mesh for each 3D
reconstructed point. The typical approach is to fit the point
cloud to the mesh and find the shortest distance between
each point and the mesh. This is not ideal for quantitative
evaluation of the quality of the reconstructed point cloud.

With FEATS, for each reconstructed 3D point, the corre-
sponding ground truth 3D point coordinate is known. This
makes it easy to calculate the error between these points.
We calculate the average L2 point error for each recon-
structed point cloud and ground truth point cloud using the
following equation:

1

N

N∑
i=1

||Xi −X∗
i | |2 (7)

where N is the number of points in the reconstruction, Xi

is 3D point i from the reconstruction, and X∗
i is the ground

truth 3D point corresponding to Xi. The resulting average
point errors (in millimeters) are provided in Table 3. Failed
reconstructions are not included and egregious (10 meters or
more) outlier points are also not included in the calculation.

Table 3 shows that COLMAP and OpenSfM provide the
most accurate point clouds. This is evidence that the re-
triangulation and bundle adjustment additions in these ap-
proaches [41] are effective at improving point cloud ac-
curacy over previous methods (e.g. VisualSfM). Figure 9
provides examples of aligned trajectories and points for all
three SfM approaches for Arc1 and Straight2. These plots
show that the camera localizations are accurate for all three
algorithms, yet the point error is noticeably different (i.e.
tens vs hundreds of millimeter errors according to Table 3).
This indicates that accurate pose estimates do not guarantee
accurate 3D point locations, reinforcing the need for new
quantitative metrics for measuring 3D point error.

COLMAP OpenSfM VisualSfM

Arc 1 21.5 26.0 84.7
Arc 2 23.0 - 110.7
Arc 3 16.8 22.2 -
Egg - 20.2 -
Long 1 8.3 - -
Long 2 9.0 12.9 461.2
Long 3 10.7 10.6 138.8
Long 4 9.3 7.3 100.3
Long 5 5.1 7.3 70.1
Pure rotation fast 33.2 - 208.5
Pure rotation slow 10.8 - 212.1
Snake 1 18.6 271.7 155.2
Snake 2 31.1 - 171.9
Straight 1 20.6 171.0 -
Straight 2 27.2 118.1 246.8
Trajectory X 7.0 11.7 109.1

Table 3: Average 3D point error (in millimeters) is calcu-
lated. The lowest errors are bold. Failure reconstructions
are denoted by “-”. Points more than 10 meters from their
ground truth position are not included.

6. Conclusions

We present FEATS, a simulation environment that mod-
els feature and matching noise to generate feature tracks
from camera trajectories in a virtual 3D scene. We show
the synthetic tracks are representative of real world data by
comparing the percentage of matches between image pairs
of real and synthetic data and by using the simulated data
to predict reconstruction successes and failures. We use
synthetic data to show that (1) COLMAP is quite robust to
2D feature noise and bad matches; and (2) accurate camera
localizations do not guarantee accurate point clouds, which
reinforces the need for ground truth 3D point error.
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Learning appearance in virtual scenarios for pedestrian
detection. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 137–144, June
2010.

[36] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2005.

[37] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. A com-
parison of affine region detectors. Int. J. Comput. Vision,
2005.



[38] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-
SLAM: a versatile and accurate monocular SLAM system.
IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[39] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.
Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016.

[40] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb:
An efficient alternative to sift or surf. In 2011 International
Conference on Computer Vision, 2011.

[41] J. L. Schönberger and J.-M. Frahm. Structure-from-motion
revisited. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016.
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